

[Type the document subtitle]

COMPUTATIONAL

NUMBER THEORY

&

CRYPTOGRAPHY

PGDCS 00: Cryptography Uttarakhand Open University

Page 1

Title Computational Number Theory &
Cryptography(PGDCS-08)

 This book is adopted from NPTEL which is available at https://nptel.ac.in/courses/106103015/ under
creative commons license.

https://nptel.ac.in/courses/106103015/

PGDCS 00: Cryptography Uttarakhand Open University

Page 2

Unit I: Computational Complexity 4

1.1 Complexity of Computation & Complexity Classes 4

1.2 Encoding Scheme 5

Unit II: GCD Computation 7

2.1 Elementary Number-Theory 7

2.2 Euclid's Algorithm 9

Unit III: Finite Groups 12

3.1 Modular Arithmetic Groups 12

3.2 Subgroups 14

3.3 Primitive roots 17

3.4 Generator Computation 19

Unit IV: Modular Arithmetic 23

4.1 Solving modular linear equations 23

4.2 Modular exponentiation 25

4.3 Chinese Remainder Theorem 27

4.4 Discrete Logarithm Problem 29

4.5 Quadratic Residues 31

Unit V: Key Exchange 36

5.1 Diffie Hellman key Exchange 36

5.2 Cryptosystems Based on Discrete Log 39

Unit VI: Public Key Cryptosystem 42

6.1 Public Key Cryptosystem & RSA 42

6.2 Choice of the Public Key 46

6.3 Attacks on RSA & Remedies 49

6.4 Rabin Cryptosystem 51

Unit VII: Factorization 55

7.1 Current state of the art 55

7.2 Large prime variant 60

7.3 Dixon's factorization method 64

7.4 Quadratic-Sieve Factoring 67

7.5 Pollard-Rho Method 72

PGDCS 00: Cryptography Uttarakhand Open University

Page 3

7.6 Pollard Rho Analysis 75

Unit VIII: Primality Testing 78

8.1 Primality Testing 78

8.2 Fermat Primality Test 82

8.3 Aks Primality Test 85

Unit IX: Elliptic Curve Cryptosystem 92

9.1 Elliptic Curves 92

9.2 Elliptic Curves (contd.) and Finite Fields 95

9.3 ECDL P 98

9.4 Zero Knowledge Proof 101

9.5 Elliptic Curve Cryptography 107

Unit X: Hash Function Digital Signatures 110

10.1 Cryptographic hash functions 110

10.2 Elgamal Digital Signatures 113

10.3 Blind & Prony Signature 116

10.4 Short Signature Scheme I 120

10.5 Short signature scheme II 123

Unit XI: Stream Ciphers 126

11.1 Video Data Cippers 126

PGDCS 00: Cryptography Uttarakhand Open University

Page 4

UNIT I: COMPUTATIONAL COMPLEXITY

1.1 COMPLEXITY OF COMPUTATION & COMPLEXITY CLASSES

We will restrict ourselves to two types of Complexities:

Time Complexity

Space Complexity.

By time/space complexity we mean the time/space as a function of input size required by an

algorithm to solve a problem.

Problems are categorized into 2 types

(i) Decision Problem

(ii) Optimization Problem.

For the purpose of present discussion we will concentrate on decision problems. This is defined

as follows.

Definition 1: Let ∑ be a set of alphabets and let L ⊆ ∑* be a language. Given a string x ∈ L or x

∉ L is decision problem.

Notation: Let p() denote a polynomial function.

We will define some complexity classes:

Definition 2: The class P comprises of all languages L ⊆ ∑* such that there exist a polynomial

time algorithm A to decide L. In other words given a string x ∈ ∑* the algorithim A can

determine in time p(|x|) whether x ∈ L or x ∉ L.

Definition3: The class NP comprises of all language L ⊆ ∑ * such that given a string x ∈ L a

proof of the membership of x ∈ L can be found and verified in time p(|x|).

Definition 4: The class Co-NP comprises of all language L ⊆ ∑* such that ∑*- L ∈NP.

Note: We can easily verify CO-P=P and thus P ⊆NP ∩ CO-NP.

Definition 5: The class PSPACE comprise of all languages L ⊆ ∑ * such that there exists an

algorithm A that uses polynomial working space with respect to the input size to decide L. In

other words given a string x ∈ ∑* the algorithim A can determine using space, i.e., p(|x|) whether

x ∈ L or x ∉ L.

PGDCS 00: Cryptography Uttarakhand Open University

Page 5

We will state without proof the following result that follows from Savitch‘s theorem:

PSPACE=NSPACE

Polynomial Time reducibility:

A language L1⊆ ∑ * is said to be polynomial time reducible to L2 ⊆∑ * if there is a polynomial

time computable function f () such that ∀ x ∈ ∑
*
, x ∈ L1 if and only if f (x) ∈ L2 . We denote this

by L1 ∝p L2. we can clearly observe that polynomial time reductions are transitive.

Completeness:

A language L ⊆∑* is said to be complete with respect to any complexity class C if all problems

in that complexity class C can be reduced to L.Thus we formally define the notion of NP-

Completeness.

Definition 6:

A language L ⊆ ∑ * is said to be NP-Complete if

(i) L∈NP

(ii) ∀L′∈NP, we have L′ ∝p L.

The above definition is not very suitable to prove a language L to be NP-Complete since we

have infinitely many language in the class NP to be reduced to L. Hence for providing NP-

Completeness we resort to the following equivalent definition.

Definition 7:

A language L is said to be NP-Complete if

(i) L∈ NP

(ii) ∃ L' ⊆ ∑* that is NP-Complete and L' ∝p L.

The previous two definitions are equivalent since:

L' is NP-Complete ⇒ ∀ L″∈NP, L″∝p L ′ (from definition 6) ⇒ ∀ L″∈ NP, L″∝p L′ ∝p L ⇒ ∀

L″∈ NP, L″ ∝p L (from the transitivity of polynomial time reductions.) ⇒ L is NP-Complete.

Only catch in this approach is to prove the first problem to be NP-Complete for which we

usually take as SATISFIABILITY problem.

1.2 ENCODING SCHEME

In all the definition of computational complexity we assume the input string x is represented

using some reasonable encoding scheme.

PGDCS 00: Cryptography Uttarakhand Open University

Page 6

Input size will usually refer to the numbers of components of an instance. For example when we

consider the problem of sorting the input size usually refers to the number of data items to be

sorted ignoring the fact each item would take more than 1 bit to represent on a computer

But when we talk about primarily testing, i.e., to test whether a given integer n is prime or

composite the simple algorithm to test for all factors from 2,3,……, is considered

exponential since the input size I(n) is bits and the time complexity is O(), i.e.,

O().

Again if n is represented in unary the same algorithm would be considered polynomial. For

number theoretic algorithms used for cryptography we usually deal with large precision

numbers. So while analyzing the time complexity of the algorithm we will consider the size of

the operands under binary encoding as the input size. We will analyze most of our programs

estimating the number of arithmetic operations as function of input size β. While converting this

complexity to the number of bit operations we have to consider the time complexities of

addition, subtraction, multiplication & division.

Addition & subtraction:

Clearly addition and subtraction of two β bit numbers can be carried out using O(β) bit

operations.

Multiplication:

Let X and Y be two ß bit numbers

Let X = 2
β/2

X 1+X 2

 Y = 2
β/2

Y1+Y2....

Then X x Y = 2
β
X1 Y1 + 2

β/2
(X1 Y2+ X2 Y1) + X2 Y2

∴ Thus the time complexity of the above multiplication

T (β) = 4T (β/2) +Cβ → Time for addition

 ↓

 4 multiplications to Compute X 1 Y1, X 1 Y2,

. X 2 Y1 & X 2 Y2

PGDCS 00: Cryptography Uttarakhand Open University

Page 7

UNIT II: GCD COMPUTATION

2.1 ELEMENTARY NUMBER-THEORY

Brief review of notions from elementary number theory concerning the set

Z = {..., -2, -1, 0, 1, 2...} of integers and

N = {0, 1, 2 , ...} of natural numbers.

Zn= {0, 1, 2… n-1}

Zn
+
= {1, 2… n-1.}

Common divisors and greatest common divisors (GCD):

Let a, b ∈ Z

d ∈ Z Λ d | a Λ d | b ⇒ d | ax + by [x, y ∈ Z]

Let d = gcd (a, b)

d' | a Λ d' | b ⇒ d' | d [d′is common divisor of a and b]

The following are elementary properties of the gcd function:

gcd(a , b) = gcd(b , a)

gcd(a , b) = gcd(- a , b)

gcd(a , b) = gcd(| a |, | b |)

gcd(a , 0) = | a |

gcd(a , ka) = | a | for any k ∈ Z .

Theorem 1

If a and b are any integers then gcd(a,b) is the smallest positive element of the set {ax + by : x, y

∈ Z }

Proof:

Let s be the smallest positive element of the set:{ ax + by : x , y ∈Z}

Let q = ⌊ a / s ⌋ and s = ax + by

a mod s = a – qs = a - q (ax + by) = a (1 - qx) + b (- qy)

a mod s < s and a mod s is a linear combination of a and b . Thus a mod s = 0 ⇒ s | a

Using analogous reasoning we can show s | b. Thus s ≤ gcd (a,b).

Let d = gcd (a,b) ⇒ d | a and d | b. Thus d | s and s >0 ⇒ d ≤ s. We have shown before d ≥ s and

thus we have established that d=s.

PGDCS 00: Cryptography Uttarakhand Open University

Page 8

Corollary 1:

For any integers a and b, if d | a and d | b then d | gcd(a, b).

Relatively prime integers

Two integers a, b are said to be relatively prime if their only common divisor is 1, that is, if

gcd(a, b) = 1.

Theorem 2

For any integers a, b, and p, if both gcd(a, p) = 1 and gcd(b, p) = 1, then gcd(ab, p) = 1.

Proof :

gcd(a, p) = 1 ⇒ ∃ x, y ∈ Z such that ax + py = 1

gcd(b, p) = 1 ⇒ ∃ x′ y′ ∈ Z such that bx′ + py′ = 1

Multiplying these equations and rearranging, we have

ab(x x') + p(ybx' + y'ax + pyy') = 1.

Thus linear combination of a, b and p is equal to 1

Thus we have gcd (ab, p) = 1

Theorem 3

For all primes p and all integers a, b if p | ab ⇒ p | a or p | b .

Proof:

Assume otherwise, i.e., p | a and p | b. Since p is prime only 2 factors are there for p i.e. 1 & p.

Therefore gcd(a, p) =1 and gcd(b, p) =1 then gcd (ab, p)=1 ⇒ p | ab.

Unique factorization

A composite integer a can be written in exactly one way as a product of the form:

a =

Where pi‘s are primes ∀i ∈ (1..k) such that p1 < p2 < p3 -----< pk

and ei ∈ Z
+
 (i=1,2,-----k)

Theorem 4 (GCD Recursion theorem)

For any non negative integer a and positive integer b gcd (a, b)= gcd (b, a mod b)

PGDCS 00: Cryptography Uttarakhand Open University

Page 9

Proof:

We will show gcd (b, a mod b) | gcd (a, b) and gcd (a, b) | gcd (b, a mod b). Let d = gcd (b, a

mod b). Thus d | b and d | (a mod b).

Now a = b + a mod b. Hence a is a linear combination of b and a mod b and so d | a.

Therefore d | a and d | b ⇒ d | gcd (a, b) from Corollary 1.

Let d = gcd (a, b) ⇒ d | a and d | b. Now a mod b = a – b and that implies a mod b is a linear

combination of a and b. Thus d | (a mod b) ⇒ d | b and d | (a mod b) ⇒ d | gcd (b , a mod b)

from Corollary 1.

2.2 EUCLID'S ALGORITHM

EUCLID (a, b)

1. if b=0

2. then return (a)

3. else return(EUCLID(b, a mod b))

Lemma: If a > b ≥ 1 and the invocation EUCLID(a, b) performs k ≥ 1 calls

then a ≥ Fk+2 and b ≥ Fk+1

Proof: (By induction)

Basis: Let k=1, we know a > b ≥ 1

⇒ b ≥ F2 = 1 (here k+1=2)

Since a > b ⇒ a ≥ 2 ⇒ a ≥ F3 (here k+2=3)

If a > b initially then this property a > b is maintained at each recursive invocation in EUCLID

(a, b) algorithm, since b > a mod b always.

NOTE: Since a mod b < b ⇒ The invariant 1
st
 argument > 2

nd
 argument of EUCLID's algorithm

is maintained during each iteration.

Inductive Hypothesis: Assume the result holds for # of invocations ≤ k -1

Inductive proof: Let EUCLID (a , b) makes k invocations

 ⇒ EUCLID (b , a mod b) makes (k -1) invocation

From our inductive hypothesis:

b ≥ F (k -1)+2 , a mod b ≥ F (k -1)+1

PGDCS 00: Cryptography Uttarakhand Open University

 Page
10

Therefore b ≥ F k +1 , a mod b ≥ F k

We know, a = * b + a mod b (where = Floor (a))

≥ 1 ⇒ a ≥ b + a mod b .

Since a mod b ≥ F k we have a ≥ F k +1 + Fk ⇒ a ≥ F k +2 .

Lame’s Theorem: For any integer k ≥ 1 if a > b ≥ 1 and if b < Fk +1 then EUCLID (a, b) makes

fewer than k recursive calls gcd (Fk +1, Fk) = gcd (Fk, Fk -1) = … = gcd (1,0) = 1

Therefore # of recursive invocation = k-1

This shows that the bound k-1 is tight.

Fk / Fk -1 Φ[Golden Ratio Φ =]

To represent Fk, # of bits required = k

Therefore for two β bit numbers running time complexity of EUCLID is O (β)

EXTENDED-EUCLID ALGORITHM

Goal: Given 2 integers a and b compute integers x and y such that gcd (a, b) = ax + by.

EXTENDED-EUCLID (a, b)

1. if b = 0

2. then return (a, 1, 0)

3. (d', x', y') ← EXTENDED-EUCLID (b, a mod b)

4. (d, x, y) ← (d', y', x'– y')

5. return (d, x, y)

For a=99 and b =78 the following table illustrates the values of variables d, x, y at different

levels of recursion for the algorithm EXTENDED-EUCLID(99, 78). We can easily verify that

gcd(99, 78) = 3 = -11(99) + 14(78).

PGDCS 00: Cryptography Uttarakhand Open University

 Page
11

The correctness of the algorithm is established from the following inductive argument.

Basis: Let d denote gcd(a, b). When EUCLID terminates b = 0 and d = a ⇒ x = 1, y = 0. Thus

the arguments returned by EXTENDED-EUCLID is correct.

Inductive Hypothesis: Assume the values d', x', y' returned by EXTENDED-EUCLID(b, a mod

b) is correct.

Induction Step: We have to show EXTENDED-EUCLID(a, b) correctly computes d, x, y.

d'= x'b + y' (a mod b) = x'b + y' (a - b) = y'a + (x'- y')b = d

⇒ x = y' and y = x'- y '.

Reference:

1. Introduction to Algorithms , Second Edition, T. H. Cormen, C. E. Leiserson, R. Rivest and C.

Stein, Prentice Hall India .

PGDCS 00: Cryptography Uttarakhand Open University

 Page
12

UNIT III: FINITE GROUPS

3.1 MODULAR ARITHMETIC GROUPS

A group (S , ⊕) is a set S together with a binary operation ⊕ defined on S for which the

following properties hold.

1. Closure: For all a , b ∈ S , we have a ⊕ b ∈ S.

2. Identity: There is an element e ∈ S , called the identity of the group, such that e ⊕ a = a

⊕ e = a, for all a ∈ S.

3. Associativity: For all a , b , c ∈ S, we have (a ⊕ b) ⊕ c = a ⊕ (b ⊕c).

4. Inverses: For each a ∈ S , there exists a unique element b ∈ S , called the inverse of a ,

such that a ⊕ b = b ⊕ a = e .

As an example, consider the familiar group (Z , +) of the integers Z under the operation of

addition: 0 is the identity, and the inverse of a is - a .

Abelian group :

If a group (S , ⊕) satisfies the commutative law a ⊕ b = b ⊕ a, for all a , b ∈ S , then it is an

abelian group .

The groups defined by modular addition and multiplication

First we define the congruence notation ≡ as follows:

If a , b ∈ Z then we say a ≡b modulo n if ∃ p , q , r ∈ Z such that a = pn + r and b = qn + r .

We will denote a mod n as [a]n

We can form two finite abelian groups by using addition and multiplication modulo n , where n

is a positive integer. These groups are based on the equivalence classes of the integers modulo n

a ≡ a ' (mod n) and b ≡b ' (mod n), then

a + b ≡ a ' + b ' (mod n),

ab ≡ a ' b ' (mod n) .

Thus, we define addition and multiplication modulo n , denoted +n and *n , as follows:

[a] n + n [b] n = [a + b] n (addition modulo n)

[a] n * n [b] n = [a *b] n (multiplicative modulo n)

PGDCS 00: Cryptography Uttarakhand Open University

 Page
13

Using this definition of addition modulo n , we define the additive group modulo n as (Z n , + n).

The size of the additive group modulo n is | Z n | = n . Modular addition over the group (Z 6 , + 6)

is defined as follows:

Closure: If a ∈ Zn and b ∈ Zn then from the definition of addition modulo n a +n b = [a + b]n ∈ Z n

Identity: 0 is the identity element of Zn

Inverse: Inverse of [a] n is [-a] n ≡ [n-a] n

Using this definition of multiplication modulo n , we define the multiplicative group modulo n

as (Z
*
n , *n) where Z

*
n={[a] n ε Z n | gcd(a , n)=1} . For e.g. when n =15,

Z
*
15= {1, 2, 4, 7, 8, 11, 13, 14}. Modular multiplication over the group (Z

*
15 , * 15) is defined as

follows:

Identity: [1] n

Inverse: Since gcd(a , n)=1 for every a ∈ Z
*
n from Extended-Euclid (a , n) we obtain x and y

such that ax + ny =1 ⇒ ax ≡ 1 mod n ⇒ x is the inverse of a .

PGDCS 00: Cryptography Uttarakhand Open University

 Page
14

Clearly both +n and *n are associative and commutative. Thus we have established the following

theorem:

Theorem 1: Both (Z n , +n) and (Z
*
n , *n) form finite Abelian groups.

|Z
*
n ,| = Φ(n) where Φ(n) is the Euler phi function .

From unique factorization theorem n can be expressed in terms of prime factors as follows:

n = p1
e1

 p2
e2

... pk
ek

In our example n =15

15 =3*5

Φ(15)=15(1-1/3)(1-1/5) =8

For n = 45 = 3
2
 *5 we have Φ(45) = 45 (1-1/3)(1-1/5)=24. Thus the group (Z

*
45 , *45) contains

|Z
*
45 | =24 elements.

3.2 SUBGROUPS

Subgroups and its Properties :

Lecture no 4.

Let (G, ⊕) be a group and H ⊆ G is a subgroup if

1. H is closed.

2. ∀ a ∈ H , a
-1

 ∈ H.

Proof: To show H is a group ∃

1. Closure [Follows from 1
st
 condition]

2. Associativity [Follows from associativity of G]

3. Inverse a ∈ H , a
-1

 ∈ H [2
 nd

condition]

 a ⊕ a
-1

 ∈ H [1
st
 condition]

 ⇒ e ∈ H

Theorem 1 : A non empty closed subset of a finite group is always a subgroup.

Proof : Let (G, ⊕) be a finite group & H be a non empty closed subset of G. Pick an element a

∈ H & generate the sequence a , a
2
 , a

3
 , ... where a

2
= a ⊕ a , a

3
 = a

2
 ⊕ a and so on.

PGDCS 00: Cryptography Uttarakhand Open University

 Page
15

This is an infinite sequence all whose members belong to finite subset H and hence all elements

in the sequence cannot be distinct. Thus there must be at least 2 elements that are identical.

a
r
 = a

s
 (r ≠s)

⇒ a
r - s

 = e

⇒ a
-1

 = a
r - s -1

 ∈ H

Thus H is a subgroup from our definition.

Definition 1: Let (G, ⊕) be a group and H is a subgroup of G. Between two elements a , b ∈ G

we define a congruence relation as follows:

a ≡ b mod H if a ⊕ b
-1

 ∈ H

Lemma 1: Congruence relation is an equivalence relation.

Proof:

Reflexive:

We have to show a ≡ a mod H for all a ∈ G

From the definition of congruence relation a ⊕ a
-1

 = e ∈ H ⇒ a ≡ a mod H.

Symmetric:

Let a , b ∈ G. Since a ≡ b mod H

a ⊕ b
-1

 ∈ H

⇒ (a ⊕ b
-1

)
-1∈ H [Since H is a subgroup]

⇒ (b
-1

)
-1

 ⊕ a
-1 ∈ H

⇒ b ≡ a mod H

Transitive:

Let a , b , c ∈ G Λ a = b mod H Λ b ≡ c mod H

 a ⊕ b
-1

 ∈ H Λ b ⊕ c
-1∈ H

 So a ⊕ b
-1

 ⊕ b ⊕ c
-1∈ H

⇒ a ⊕ c
-1 ∈ H

⇒ a ≡ c mod H

Cosets: Let (G, ⊕) be a group and H is a subgroup of G .Pick an element a belonging to G.

Let H a = { h ⊕ a | h ∈ H} be Right coset

Let a H= { a ⊕ h | h ∈ H} be Left coset

Lemma 2: H a = { x | x ≡ a mod H} ∀a ∈ G

Proof: Let [a] = { x | x ≡ a mod H}. We have to show H a =[a].

PGDCS 00: Cryptography Uttarakhand Open University

 Page
16

To prove H a ⊆ [a] let us pick an element h ⊕ a ∈ H a . Thus ∀ h∈ H a ⊕ (h ⊕ a)
 -1

 = a ⊕a
-

1
 ⊕ h

-1
 = h

-1
 ∈H [Since H is a subgroup].

⇒ h ⊕ a ∈[a]

To prove that [a]⊆ H a let us pick an element x ∈[a]

⇒ a ⊕ x
-1

 ∈ H

⇒ (a ⊕ x
-1

)
-1∈ H

⇒ x ⊕ a
-1

 ∈ H

Therefore for some h ∈H we have x = h ⊕ a . Thus x ∈ H a and [a]⊆ Ha.

Lemma 3: There is a one to one correspondence between any 2 right cosets of G.

Proof: To establish one to one correspondence between two sets X and Y we have to exhibit a

mapping f : X → Y such that ∀ a 1 , a 2 ∈X , a 1 = a 2 if and only if f(a 1)=f(a 2) where f(a 1), f(

a 2) ∈Y . Also f has to be onto. As in our case we have if h 1⊕ a = h 2 ⊕ a then h 1 = h 2 and

thus h 1 ⊕ b = h 2 ⊕ b . The function is also onto because for every element h ⊕ b in the range

there is an inverse element h ⊕ a in the domain.

Theorem 2 [Lagrange]: Let (G, ⊕) be a finite group and H is a subgroup of G. Then o(H) |

o(G).

Proof: Notation o(S) = |S|

Let k be the number of right cosets. Thus k * o(H) = o(G) and o(H) | o(G).

Order of an element

Let (G, ⊕) be a finite group. Let a ∈ G. Then order (a) is defined as the smallest positive

integer t such that a
(t)

 = e. [a
t
 = a ⊕ a ⊕ a ... ⊕ a t times].

Theorem 3 : For any finite group (G,*) and any a ∈ G the order of the element is equal to the

size of the subgroup it generates i.e., ord (a) =|<a>|.

Proof: < a > = e , a , a
2
 , a

3

PGDCS 00: Cryptography Uttarakhand Open University

 Page
17

Let t = ord (a). So a
(t)

 = e .

⇒ a
(t) *

 a
 (k)

⇒ e
 *

a
(k)

 = a
 (k)

If j > t ∃ i < j such that a
(i)

 = a
(j)

Thus no new elements are generated beyond a
(t)

 . Hence |< a >| ≤ t .

Now we have to show that |< a >| ≥ t by proving all elements in < a > = { a
1
 , a

2
 ,….., a

t
 } are

distinct. Assume otherwise ⇒∃1≤ i < j ≤ t such that a
i
 = a

 j
 . Let t be j + k . Hence a

 i+k
 = a

j + k
 =

a
(t)

 = e ⇒ a
i +(t - j)

 = e and we know that i + t - j < t . Thus we arrive at a contradiction since t =

ord (a) is the smallest power to which a has to be raised to become identity. Thus our

assumption ∃1 ≤ i < j ≤ t such that a
i
 = a

j
 is incorrect . Therefore, each element of the sequence

a
(1)

 , a
(2)

 , ..., a
(t)

 is distinct, and |< a > | ≥ t . Thus we conclude that ord (a) = |< a > |

Corollary 1 :

Let (G, ⊕) be a finite group with identity e then for all a ∈ G we have a
ord(G)

 = e .

Proof : Consider the subgroup < a > of G. From Theorem 3 |< a >| = ord(a). From Lagrange's

theorem ord (a) | ord(G). Let ord (G) be k * ord(a). Thus a
ord(G)

 = a
 k *ord(a)

 = e
k
 = e .

Consider the group (Z
*

n,
*
 n). We already know that | Zn

*
 | = Φ(n).

Euler's Theorem :

For any integer n > 1

a
Φ(n)

 ≡ 1 mod n for all a ∈ Zn
*
 . [Corollary 1]

Fermat's Theorem :

If p is a prime then | Zp
*
 | = Φ (p) = p -1.

a
(p -1)

 ≡ 1 mod p for all a ∈ Zp
*
.[Corollary 1]

Reference:

1. Introduction to Algorithms , Second Edition, T. H. Cormen, C. E. Leiserson, R. Rivest and C.

Stein, Prentice Hall India .

2. Topics in Algebra , Second Edition, I. N.Herstein, John Wiley .

3.3 PRIMITIVE ROOTS

Definition 1: In a group (G, ⊕) an element g ∈ G is called a primitive root or the generator if

ord(g) = |G|.

PGDCS 00: Cryptography Uttarakhand Open University

 Page
18

Definition 2: A group (G, ⊕) is said to be cyclic if there is a generator for G.

Now the natural question is if (Zn
*
, xn) always cyclic?

The answer is no. The following theorem Niven and Zuckerman [..] characterizes for which n

(Zn
*
, xn) is cyclic.

Theorem 1: The value of n >1 for which (Zn
*
, xn) is cyclic are 2, 4, p

e
 and 2p

e
, for all primes p >

2 and positive integer e .

We will not prove the entire theorem. But we will concentrate on the special case when n is a

prime p and show that (Zn
*
, xn) is always cyclic.

Lemma 1 : For any n >1,

Proof : Let ∀g Ag = { x |1 ≤ x ≤ n ∧ gcd(x , n) = g }.

If g | n then the corresponding Ag's are non-empty. They partition the set {1, 2, 3 …, n } such that

.

Let d = n / g . [Assume | Ag | = Φ(n / g)]

Let x ∈ Zd
*
 <=> gcd(xg , dg) = g *gcd(x , d) = g [since gcd(x , d)=1]

....................<=> gcd(xg , x) = g

....................<=> xg ∈ Ag

Therefore there is a one to one correspondence between elements of Zd
*
 and Ag .

 ⇒ | Ag | = | Zd
*
 | = Φ(d) . ⌊

Theorem 2 : Zp
*
 is cyclic and has Φ(p -1) generators.

 Proof : Zp
*
 = {1, 2, …, p -1} . Let Ok= { x ∈ Zp

*
 | ord(x)= k }

Clearly …………….. (1)

Assume | Ok | = 0 or Φ(k) (that is to be proved later in Lemma 2)

Then [From Lemma 1]

PGDCS 00: Cryptography Uttarakhand Open University

 Page
19

For the equality (1) to hold, we must have | Ok | = Φ(k) for all k | (p -1).

Put k = p -1 and there are Φ (p -1) generators of Zp
*
.Thus it must be cyclic.

Lemma 2: | Ok | = 0 or Φ(k)

 Proof: If | Ok | ≠ 0 then ∃ an element a ∈ Ok.

Generate the sequence { a , a
2
 , a

3
 …, a

k
 = e }

To prove this lemma we first establish a claim as follows:

Claim: ∀ 1 ≤ j ≤ k ord(a
j
) = k if and only if gcd (j , k) =1.

To prove the if part let us assume gcd (j , k) =1. Thus there exists integers m and n such that mj

+ nk = 1. Let k'' be the order of a
 j
 and assume k'' < k . Therefore (a

 j
)

k"
= e . So we have:

Thus ord(a) < k which is a contradiction. Hence our assumption on the order of a
j
 to be less

than k is incorrect.

To prove the only if part we assume gcd(j , k) = k ' >1. Then (a
j
)
k / k'

= (a
j
)
 j / k'

 =(e)
j / k'

 = e .

Since k' >1, (k / k') < k ⇒ a
j
 has order < k .

So we have established our claim.

Thus Ok= { a
j
 | gcd(j , k) =1} ⇒ | Ok | = Φ(k) . ⟨

Theorem 2 provides a nice characterization of computing generators for the group (Zp
*
, x p).

A randomized Las Vegas algorithm to compute the generator is to pick an element a ∈ Z
*

p at

random and check if its order is p -1. We will describe the checking of order of an element later.

First we observe that since there are Φ (p -1) generators of Z
*

p the probability that an arbitrary

element of Z
*

p is a generator equals Φ (p -1)/(p -1). Thus after expected (p -1)/ Φ (p -1) trials

we will be able to obtain a generator.

3.4 GENERATOR COMPUTATION

From the fundamental theorem of arithmetic, we have n = where p1 > p2 >.....pk

are prime numbers and each αi > 0 .

Lemma 3: For each i ≥ 1, pi > i .

Proof: We will prove the above lemma using induction. Let us assume our inductive hypothesis

holds ∀i < m. We must show that it holds for i = m. The basis is clearly verified from the fact

PGDCS 00: Cryptography Uttarakhand Open University

 Page
20

that for i= 1, pi ≥ 2. Therefore pi > i for i=1. From our inductive hypothesis we have pm-1 > m -1 .

Since pm-1+1 is an even number we have pm > pm-1+1. Therefore pm > m and our inductive

hypothesis holds for i=m . •

Theorem 3: If ω (n) denotes the number of distinct prime factors of n , then

ω (n) ∈ O .

Proof: From the fundamental theorem of arithmetic, we have n = where p1 > p2

>.....pk are prime numbers and each αi > 0.

Now to maximize k , the number of distinct prime factors, we restrict each αi so that each αi = 1 .

Thus from Lemma 3 we have n = p1 > p2 >.....pk> k !. Using Stirling's Formula we obtain :

Theorem 4:

Proof: We know F (n) = n where n = . From

Lemma 3 we have:

⇒ ⇒ ⇒

Now the only thing that is left is to compute the order of the randomly picked element a ∈ Zp
*
.

For this we have to assume the prime factorization of (p – 1) is available with us. Let p1 , p2

,.....pk are distinct prime factors of (p – 1). The following theorem enables us to compute the

generator in polynomial time.

PGDCS 00: Cryptography Uttarakhand Open University

 Page
21

Theorem 5: Let p be a prime, a ∈ Zp
*
 is a primitive root or the generator if and only if the

congruence relation does not hold for each prime divisor pi.

Proof: Let a be a generator of Zp
*
, then we have a

p-1
≡ 1 (mod p) and a

h
 ≠1(mod p) ∀ h ∈ (0 ..

p – 1). Since ∈ (0 .. p – 1) ∀ pi , we cannot have for any pi .

Let does hold for some prime divisor pi . Assume that a is not a primitive

root, then its order should be less than p – 1. Let ord(a) = d . Then we have d < p – 1 Λ d | p – 1.

So (p – 1) / d is an integer and is therefore divisible by some prime factor pi of p -1. Then

for some c . Then , this contradicts with our

assumption. So our assumption is wrong and hence a cannot be a generator of Zp
*
.

From our previous discussion the probability of finding a generator in a single trial is Φ (p -1)/(

p -1). Thus with high probability after expected (p -1)/ Φ (p -1) trials, i.e., O

trials we will obtain a generator. Since the maximum number of distinct

prime factors of (p – 1) will be O . So we have to test O

pi' s such that does not hold for each pi.

For the time being we will assume time to perform modular exponentiation is O(log p). [We will

elaborate this algorithm later.]

Thus we have established the following theorem:

PGDCS 00: Cryptography Uttarakhand Open University

 Page
22

Theorem 6: Given a prime p and the prime factorization of p –1, a generator of (Zp ,
*
 x p) can

be computed by a randomized Las Vegas algorithm with expected running time O

.

PGDCS 00: Cryptography Uttarakhand Open University

 Page
23

UNIT IV: MODULAR ARITHMETIC

4.1 SOLVING MODULAR LINEAR EQUATIONS

Solve for the unknown x in the following equation:

ax ≡ b mod n

given a , b and n .

Consider the subgroup of (Zn, +n), i.e., { a
x
 : x > 0 } = { ax mod n : x > 0 } = < a >. Thus the

above equation has a solution if and only if b ∈< a >.

Theorem 1:

For any positive integers a and n , if d = gcd(a , n), then < a > = < d > = {0, d , 2 d , 3 d , …., ((

n / d)-1)/ d } in Znand thus |< a >| = n / d .

Proof:

We have to show that < a > = < d >. First we show < d > ⊆ < a > . Since d = gcd (a , b) we

have x , y ∈ Zn
+
 such that d = ax + ny . If either x or y returned by EXTENDED-EUCLID is

negative we consider them as [n + x] n or [n + y] n respectively. Thus ax ≡ d mod n ⇒ d ∈ < a

> ⇒ d is some multiple of a . All others members of < d > belongs to < a > since they are

multiple of d ⇒ multiple of multiple of a .

Now we show < a > ⊆ < d >. Pick an arbitrary element m ≡ ax mod n ∈ < a > ⇒ m = ax + ny ⇒

d | m (since d | a and d | n) ⇒ m ∈ < d >. Combining these result < a > = < d >

Corollary 1:

The equation ax ≡ b (mod n) is solvable for the unknown x if and only if gcd(a , n) | b .

Theorem 2: Let d = gcd (a , n) and suppose that d = ax'+ ny' for some integers x' and y ' . If d |

b then the equation ax ≡ b mod n has one of its solutions x0 as:

x0 = x' (b / d) mod n

Proof: We have to show ax0 ≡ b mod n . From the given condition we know ax' ≡ d mod n .

Thus ax0 ≡ ax' (b / d) mod n ≡ d (b / d) mod n ≡ b mod n .

Theorem 3: Consider the modular linear equation ax ≡ b mod n . If d = gcd(a , n) and d | b and

PGDCS 00: Cryptography Uttarakhand Open University

 Page
24

that x0 is any solution to this equation then this equation has d distinct solutions:

xi = x 0 + i (n / d) for i = 0, 1, …, d -1

Proof: We have to show axi ≡ b mod n ∀ i ∈ (0 .. d -1) . Since d = gcd(a , n) , d | a . Hence ∃ an

integer k = a / d . From the given condition the following must hold:

axi ≡ a (x0 + i (n / d)) mod n ≡ (ax0+ ai (n / d)) mod n ≡ (ax0 + kin) mod n ≡ ax0 mod n ≡ b

mod n.

So xi is a solution to the given equation. Thus we conclude there are d distinct solutions to the

given equation.

The following procedure computes all solutions of the modular linear equation ax ≡ b mod n .

MODULAR-LINEAR-EQUATION-SOLVER (a , b , n)

1. (d , x ' , y ') ← EXTENDED-EUCLID(a , n)

2. if d | b

3. then x0 ← x ' (b / d) mod n

4. for i = 0 to d -1

5. do print (x0 + i (n / d)) mod n

6. else print “No Solution.”

Exercise: Find all solutions to the equation 35 x ≡ 10 (mod 50)

Solution: Here a = 35, b = 10 and n = 50. We know gcd(35, 50) = 5. Thus there are 5 solutions

to the given equation.

Since 3 x 35 + (-2) x 50 = 5 we have x' = 3. Thus x0 = x' (b / d) mod n = 3 x (10/5) mod 50 =

6. Other solutions are xi = x0 + i (n / d) [i = 1, 2, …, 4] i.e., x1 = 16, x2 = 26, x3 = 36, x4 = 46.

Corollary 2: For any n > 1 if gcd(a, n) =1 then the equation ax ≡ b mod n has exactly one

solution.

Corollary 3: For any n > 1 if gcd(a, n) =1 then the equation ax ≡ 1 mod n has exactly an unique

solution, i.e., a
-1

 ∈ Z n
*
.

Reference:

1. Introduction to Algorithms , Second Edition, T. H. Cormen, C. E. Leiserson, R. Rivest and C.

Stein, Prentice Hall India .

2. Introduction to Analytic Number Theory , T. M. Apostol, Springer International .

PGDCS 00: Cryptography Uttarakhand Open University

 Page
25

4.2 MODULAR EXPONENTIATION

A frequently occurring operation in number-theoretic computations is raising one number to a

power modulo another number, also known as modular exponentiation . More precisely, we

would like an efficient way to compute a
 b

mod n , where a and b are nonnegative integers and n

is a positive integer. They all are β bit numbers.

To compute a
b
 (mod n) we can adopt the following approach:

Perform b multiplications (a × a × a × … × a) mod n .

There are some drawbacks of this approach that are as follows:

1. 1. The intermediate result is too large to fit in memory.

2. Not polynomial-time with respect to input size, since we are performing b

multiplications where our input size is β ≅⌈ log b ⌉ .

Here we present a polynomial time algorithm to perform modular exponentiation using repeated

squaring.

MODULAR-EXPONENTIATION (a , b , n)

1 c ← 0

2 d ← 1

3 let < bkbk-1 ... b0 > be the binary representation of b .

4 for i = k down to 0

5 do c ← 2 c

6 d ← (d · d) mod n

7 if bi = 1

8 then c ← c + 1

9 d ← (d · a) mod n

10 return d

Here we note that the above program will run perfectly even if we remove the variable c

altogether from the program. The variable c is retained to describe the loop invariant with which

we establish the correctness of the above algorithm.

Invariant: In each iteration the following invariant is maintained:

1. 1. Let the current bit being processed is bi. The value of c is the same as the prefi x <

bkbk-1 ..., bi+1 > of the binary representation of b .

2. d = a
c
 mod n .

PGDCS 00: Cryptography Uttarakhand Open University

 Page
26

We use this loop invariant as follows:

Initialization:

Initially i = k , so that the prefi x < bkbk-1 ..., b i+1 > is empty, which corresponds to c = 0.

Moreover, d = 1 = a
c
mod n .

Maintenance:

Let c ' and d ' denote the values of c and d at the end of an iteration of the for loop and thus the

values prior to the next iteration. Each iteration updates c ' ← 2 c (if bi = 0) or c ' ← 2 c + 1 (if bi

= 1), so that c will be correct prior to the next iteration.

If bi = 0 then d ' = d
2
 mod n i.e., d ' = (a

c
)
2
 mod n and hence d ' = a

 2c
 mod n = a

c'
 mod n .

If bi = 1 then d' = d
2
 a mod n i.e., d ' = (a

c
)
2
 a mod n and hence d ' = a

 2c+1
 mod n = a

c'
 mod n .

in either case, d = a
c
mod n prior to the next iteration.

Termination:

At termination, i = -1. Thus, c = b , since c has the value of the prefi x < bkbk-1 ... b0 > of b 's

binary representation. Hence d = a
c
 mod n = a

b
 mod n .

Analysis of Time Complexity:

If the inputs a , b , and n are β -bit numbers then the total number of arithmetic operations

required is O(β) since we are iterating β times. Since the time complexity of multiplying two β -

bit numbers is O(β
2
) the total number of bit operations required is O(β

3
). Thus the algorithm

is clearly polynomial with respect to input size.

Note: Modular exponentiation algorithm is an essential component used in several cryptographic

algorithms.

One weakness of the algorithm is the different timing requirement of each iteration depending on

the value of the bit bi. If the bit bi= 0 clearly the for loop take much less computation time than

the bit bi = 1. This weakness of modular exponentiation had been exploited to attack several

cryptographic algorithms. This attack is known as timing attack .

There are several remedies to overcome the attack. One possible solution is to remove the

difference in computation time for bi= 0 or 1 by adding some delay in each iteration when bi= 0

and making the loop execution time equal to that of bi = 1. We will discuss other remedies later.

Reference:

1. Introduction to Algorithms , Second Edition, T. H. Cormen, C. E. Leiserson, R. Rivest and C.

Stein, Prentice Hall India .

PGDCS 00: Cryptography Uttarakhand Open University

 Page
27

4.3 CHINESE REMAINDER THEOREM

Around A.D. 100, the Chinese mathematician Sun-Tsu posed the following problem:

Problem 1: Determine the numbers that leave remainders 2, 3 and 2 when divided by 3, 5 and 7

respectively.

One solution to the above problem is 23. The general solution is 23+105k for arbitrary integer k.

A system of two or more linear congruence need not have solution. Consider the system of

congruence x ≡ 0 mod 2 and x ≡ 1 mod 4. This system is clearly unsolvable. Since the second

congruence implies x is of the form 4k + 1 which makes it indivisible by 2 and thereby making

the first congruence infeasible.

But the above argument doesn‘t hold when the system of congruence have pair-wise relatively

prime moduli (for example 3, 5 and 7). We will prove that the system of congruence that can be

solved individually can also be solved simultaneously provided they have pair-wise relatively

prime moduli.

We will first prove the result for a system of 2 congruence relations and then generalize for

arbitrary number of congruence relations.

Lemma 1: The system of congruence x ≡ a mod n1 and x ≡ b mod n2 has exactly one solution

modulo the product n1n2 provided gcd (n1, n2) =1.

Proof: Since gcd (n1, n2) = 1 there are integers p and q such that pn1 + qn2 = 1. Thus pn1≡ 1 (mod

n2) and qn2 ≡ 1 (mod n1). Let x' = bpn1 + apn2. Thus x' ≡ a mod n1 and x' ≡ b mod n2. Thus x' is a

solution to our given system of congruence. Let x" denote another solution to the system. Thus x'

≡ x" (mod n1) and x' ≡ x" (mod n2). Since gcd (n1, n2) = 1 we have x' ≡ x"(mod n) where n =

n1n2.

Chinese Remainder Theorem (Generalized Version): Let n1, n2, …, nk be pair-wise relatively

prime integers with gcd (ni, nj) = 1 where i ≠ j. Let a1, a2, …, ak be arbitrary integers. Then there

exists exactly one solution x (mod n1x n2 x… x nk) to the system of congruence:

PGDCS 00: Cryptography Uttarakhand Open University

 Page
28

x ≡ a1 (mod n1), x ≡ a2 (mod n2), …, x ≡ ak (mod nk).

Proof: Let n = n1 x n2 x… x n k. Let us define mi = n/ni for i = 1, 2, …,k. Thus m i = n 1 x n 2 x…

x n i-1 xni+1 x… x n k . We now define ci = m i (mi
-1

 mod n i) for i = 1, 2, …,k. We know mi
-1

 mod n

i exists since gcd(mi , ni) = 1. Finally we define :

x ≡ (a 1 c 1 + a2 c2 + … + a k c k) (mod n)

To prove that x satisfies every congruence we argue as follows. We know that

cj≡ mj ≡ 0 (mod ni) for j ≠ i and ci ≡ 1 (mod ni) otherwise. Thus

x ≡ a i c i (mod ni)

 ≡ a i m i (mi
-1

 mod ni) (mod ni)

 ≡ ai (mod ni)

For all i = 1, 2, …,k.

Problem 2: Find all solutions to the equations x ≡ 4 (mod 5) and x ≡ 5 (mod 11).

Solution: a1 = 4, n1= m2 = 5, a2 = 5 and n2 = m1= 11. n = 55.

We know 11
-1

 ≡ 1 (mod 5) and 5
-1

 ≡ 9 (mod 11). Thus we have:

c1 = 11 (1 mod 5) = 11 and c 2 = 5 (9 mod 11) = 45

Thus x = 4 x 11 + 5 x 45 (mod 55) = 44 + 225 (mod 55) = 269 (mod 55) = 49 (mod 55).

So the general solution to the given system of congruence is 49 + 55k where k is an arbitrary

integer.

Corollary 1: If n1, n2, …, nk are pair-wise relatively prime and n = n1 x n2 xx nk then for all

integer x and a

x ≡ a (mod ni)

for i = 1, 2, …, k if and only if

x ≡ a (mod n).

Proof: For the if part of the proof we assume x ≡ a (mod n) and hence (x-a) = kn for some

integer k. Thus ni | (x-a) since n = n1 x n2 xx nk.

To prove the only if part we assume x ≡ a (mod ni) for all i = 1, 2, …, k. We prove this part by

induction on k.

PGDCS 00: Cryptography Uttarakhand Open University

 Page
29

Basis: When k = 2 we have x ≡ a (mod n1) and x ≡ a (mod n2). We have to prove x ≡ a (mod

n1n2). From the given congruence we can infer there exists integers k1 and k2 such that (x-a) =

k1n2 = k2n2. Since n1 and n2 are relatively prime we have integers l and m such that ln1 + mn2 = 1.

Multiplying both sides by (x-a) we have lk 2n 2n 1 + m k 1n 1n2 = (x-a) and hence (x-a) = k3n1n 2

where k3 is an integer.

Inductive Hypothesis: Assume the hypothesis holds for pair-wise relatively prime integers n1,

n2, …, nk-1.

Induction step: We have to show the corollary holds for pair-wise relatively prime integers n1,

n2, …, nk. Let n'= n1 x n2 x… x nk-1. We know that n' and nk are relatively prime and x ≡ a (mod

n') and x ≡ a (mod nk). Following similar argument used for the proof of the basis we can show x

≡ a (mod n'nk). We also know that n = n1x n2 x… x nk and thus n = n' x nk. Hence we have

proved that x ≡ a (mod n).

Reference:

1. Introduction to Algorithms , Second Edition, T. H. Cormen, C. E. Leiserson, R. Rivest and C.

Stein, Prentice Hall India .

2. Introduction to Analytic Number Theory , T. M. Apostol, Springer International .

4.4 DISCRETE LOGARITHM PROBLEM

Theorem 1: If g is a generator of Zn
*
 then the equation g

x
 ≡ g

y
 (mod n) holds if and only if the

equation x ≡ y (mod Φ(n)) holds

Proof : To prove the if part we assume x ≡ y (mod Φ(n)). Thus x = y + kΦ(n) for some integer k.

Therefore

g
x

= g
y+kΦ(n)

= g
y
 (g

Φ(n)k
)(mod n)

= g
y
 (1)

k
 (mod n)

= g
y
 (mod n)

To prove the only if part we assume that g
 x

 ≡ g
 y

(mod n). The sequence of powers of g generates

every element of <g>and |<g>| = Φ(n). Thus the sequence of powers of g is periodic with period

Φ(n). Therefore if g
x
 ≡ g

y
 (mod n), then we must have x ≡ y (mod Φ(n)).

Discrete Logarithm: Let g be the generator of the group Zn
*
 . Given an element y = g

x
 (mod n)

the discrete logarithm is defined as dlogn,g(y) = x.

PGDCS 00: Cryptography Uttarakhand Open University

 Page
30

Let us consider and the group (Z7
*
, xn) . Clearly the group is cyclic since n = 7 is a prime number.

We can see that 3 is a generator of the group. Thus discrete logarithm according to the previous

definition is defined by the following table:

x 1 2 3 4 5 6

dlog7,3(x) 0 2 1 4 5 1

Table – 1

Given g, x and n it is easy to determine y. By the word easy we mean it is polynomial time

computable. This clearly follows from the fact that we can perform modular exponentiation in

polynomial time. But given g, y and n it is difficult to compute x. This problem is known as the

discrete logarithm problem. Till to-date we are not aware of any polynomial time algorithm for

this problem. Many cryptographic algorithms utilize the difficulty of solving the discrete

logarithm problem.

Now we can clearly see that given n if we pre-compute the entire Table-1 by computing

sequentially the indices g
0
 mod n, g

1
 mod n ,…so on and storing the corresponding exponent of g

in the indexed array location. Once we are done with this preprocessing given an arbitrary x we

can compute dlogn,g (x) in polynomial time. But there comes the tradeoff between time and

memory .

Note: Discrete Logarithm Problem∈ NP. This follows from the fact that given a guess of x

clearly the verification whether y = g
x
 (mod n) can be carried out in polynomial time using

modular exponentiation algorithm.

Properties of Logarithms:

loga1 = 0

logaa = 1

logaxy = logax+logay

logax
n
 = nlogax

Properties of Discrete Logarithms:

dlogn,g (1) = 0 g
0
 = 1(mod n)

dlogn,g(g) = 1 g
1
 = g(mod n)

dlogn,g(xy) =(dlogn,g(x)+dlogn,g(y)) (mod(Φ(n))

[Proof is provided in the Explanation]

PGDCS 00: Cryptography Uttarakhand Open University

 Page
31

dlogn,g x
r
 = r dlogn,g(x) (mod Φ(n))

[Using repeated application of the earlier property]

Explanation :

x = g
dlogn

n,g
(x)

y = g
dlogn

n,g
(y)

(xy) modn = g
(dlog

n,g
(x)+dlog

n,g
(y))

modn

xy = g
dlog

n,g
x,y

(modn)

g
dlog

n,g
(xy)

 ≡ (g
(dlog

n,g
(x)+dlog

n,g
(y)

) modn

Applying Theorem 1 we have:

dlogn,g (xy) = (dlogn,g(x)+dlogn,g(y)) mod(Φ(n)))

Reference:

1. Cryptography and Network Security , William Stallings, Prenctice Hall India .

2. Introduction to Cryptography with Coding Theory , W. Trappe and L. C. Washington,

Pearson Education .

4.5 QUADRATIC RESIDUES

Definition 1: An element a∈Z*
p is called a quadratic residue if there are elements ±x∈Z*

n such

that x
2
 ≡ a mod n . Otherwise we call a to be a non-quadratic residue .

Lemma 1: Let p be an odd prime and g be the generator of Z
*
p . Then all even powers of g are

quadratic residues and all odd powers of g are non-quadratic residues.

Proof: Let l = 2 k be an even number and clearly g
l
is a quadratic residue since (± g

k
)

2
 ≡ g

l
 mod

n . Thus here x = g
k
 . In contrast let l = 2 k + 1 be an odd number. We will prove that in this case

g
l
 is not a quadratic residue by contradiction. Assume otherwise, i.e., let g

l
 be a quadratic residue.

Thus there exists x = g
m

 ∈Z
*
p such that x

2
 ≡ a mod n . Thus g

2m
 ≡ g

2k+1
 mod p. Applying

Theorem 1 in lecture-4 (Module -3) we have . Thus we have 2 m ≡ 2 k + 1 mod Φ(p). Thus we

PGDCS 00: Cryptography Uttarakhand Open University

 Page
32

have 2 m≡ 2 k + 1 mod (p -1). This implies (p -1) | (2 m -2 k -1). Since p -1 is an even number

and (2 m -2 k -1) is an odd number and an even number cannot divide an odd number we have

arrived at a contradiction. Thus our assumption that g
l
 is a quadratic residue is not correct and

hence it is a non-quadratic residue.

Theorem 1: Let p be an odd prim and e ≥ 1. Then the equation x
2
≡ 1 mod p

e
 has only 2 solutions

namely ±1.

Proof: Let g be the generator of the cyclic group . Thus we can rewrite our modular

equation as . Thus from Theorem 1 in lecture-4 (Module-3) we

have . We know Φ(p
e
) = p

e-1
 (p-1). Thus the given modular

equation is solvable since gcd(2, p
e-1

 (p-1)) = 2 | 0 and it has exactly 2 solutions namely ±1 (By

Inspection).

Note that if n is an arbitrary composite number the equation x
2
 ≡ 1 mod n can have more than 2

solutions. For example if n = 15 then 4 and 11 are two non-trivial roots of the equation x
2
 ≡1

mod n besides 1 and 14. Later in Theorem 3 we will estimate the number of roots of the

equation x
2
 ≡ 1 mod n when n is an arbitrary composite number.

Theorem 2: [Euler] Let and it is a quadratic residue if and only

if

Proof: To prove the if part we assume that is a quadratic residue. Thus it must an

even power of g where g is a generator of . Let a be equal to g
2k

. Thus

PGDCS 00: Cryptography Uttarakhand Open University

 Page
33

For the only if part we assume that is a non-quadratic residue. Thus it must be an

odd power of g where g is a generator of Let a be equal to g
2k+1

. Thus

Since g
p-1

≡ 1 mod p and from Theorem 1 . Since g is the generator its order

cannot be less than (p-1). Thus and .

Now the most natural question is what happens when n is composite. In other words how many

roots are there of the equation x
2
 ≡ a mod n when n is a composite number. We have to consider

two cases:

 n is even and of the form

 n is odd and of the form

In both cases pi‘s are all primes. From Theorem 1 we know that there are exactly 2 roots for

each of the modular linear equation x
2
 ≡ 1 mod ∀i (pi ≠ 2). Again we can easily prove the

following for modular linear equations.

 x
2
 ≡1 mod 2 has only 1 root.

 x
2
 ≡ 1 mod 4 has exactly 2 roots.

 x
2
 ≡ 1 mod 2

e
 has exactly 4 roots for ∀e ≥ 2.

With this knowledge if we lift the result from primes to composites using CRT (Chinese

Remainder Theorem) we can observe that the equation x
2
 ≡ a mod n has 2

k
roots when n is odd

and when n is even it has 2
k-1

, 2
k
 and 2

k+1
 roots respectively for e1=1, e1=2 and e1≥ 2.

Now we introduce to the notion of Legendre Symbol of an element . It is denoted

PGDCS 00: Cryptography Uttarakhand Open University

 Page
34

by and is defined as follows:

= =

depending on whether a is a quadratic residue or non-quadratic residue from Euler‘s Criterion.

Theorem 3: For every odd prime p we have = (-1) = depending on p ≡1 mod

4 and p ≡ 3 mod 4 respectively.

Theorem 4: For every odd prime p we have = = +1 (if p ≡ ±1 mod 8) and = -1

(if p ≡ ±3 mod 8).

Proof: Consider the following congruences :

p-1 ≡ 1(-1)
1
 mod p, 2 ≡ 2(-1)

2
 mod p, p -3 ≡ 3(-1)

3
 mod p, 4 ≡ (-1)

4
 mod p, …, r

≡ mod p. Here r is either p – (p-1)/2 or (p-1)/2. If we multiply these

congruences and observing the fact that the number on the left of each congruence is even, we

obtain:

2.4.6 … (p-1) ≡ ! (-1) mod p.

Thus we have ! ≡ !(-1) mod p. Since !≡ 0 mod p we have

established the first equality since = .

Theorem 5: If a prime p ≡ 3 mod 4, then ≡ ∀ either is a or –a is a non-quadratic

residue.

PGDCS 00: Cryptography Uttarakhand Open University

 Page
35

Proof: If p ≡ 3 mod 4, then p will be of the form 4l + 3 for some integer l, i.e., p = 2k+1 for some

odd number k where k = 2l+1. We prove the theorem using contradiction. Assume both a and –a

are quadratic residues modulo p. We then have x
2
 ≡ a mod p and y

2
 ≡ -a mod p for some x, y

∈Z
*
p . From this we have x

2k
 ≡ ak mod p and y

2k
≡ (-1)

k
a

k
 mod p. Since k is odd x

2k
 mod p and y

2k

mod p must have opposite signs. But from Fermat’s little theorem, both x
2k

 and y
2k

must be

congruent to 1 mod p, which contradicts the assumption. Hence either a or –a is a non-quadratic

residue.

If p ≡ 3 mod 4 then either p ≡ 3 mod 8 or p ≡ 7 mod 8. Using the previous theorems we can

easily show that the first case 2 is the generator and in the second case p-2 is the generator. Thus

using this characterization we can compute the generator of any odd prime p ≡ 3 mod 4 in O(1)

time.

Now we will prove an important theorem for finding out the square root of any quadratic residue.

Theorem 6: If a ∈Z
*
p is a quadratic residue then its square root is mod p.

Proof: Clearly we can see that mod p = mod p = mod p = a mod p.

This is because Legendre symbol mod p = +1, since a is a quadratic residue.

We can use the above theorem to compute the square root of any quadratic residue

deterministically using modular exponentiation when p ≡ 3 mod 4.

Reference:

1. Introduction to Algorithms , Second Edition, T. H. Cormen, C. E. Leiserson, R. Rivest and C.

Stein, Prentice Hall India .

2. Introduction to Analytic Number Theory , T. M. Apostol, Springer International .

3. Randomized Algorithms , R. Motwani & P. Raghavan, Cambridge University Press .

PGDCS 00: Cryptography Uttarakhand Open University

 Page
36

UNIT V: KEY EXCHANGE

5.1 DIFFIE HELLMAN KEY EXCHANGE

This key exchange protocol is one of the earliest technique that illustrates the use of number

theory in public key cryptography. Here two parties say Alice and Bob want to agree on a

common key K that will be used for encryption in a symmetric key cryptosystem. A simple

example is as follows:

Key : K, Message : m

Encryption by Alice :

 Cipher text produced is C = m ⊕ K

Decryption by Bob :

 Original message is retrieved back as follows: m⊕K ⊕K = m.

During the process of establishing agreement between Alice and Bob it is essential that no third

party should be able to compute K. Let us first describe the process of establishing agreement:

 YA =

 YB =

Publicly Available Information: prime p , generator g of the group (Z
*

p , x p).

Step 1. Both Alice and Bob choose their private keys XA and XB respectively such that 1 < XA <

p -1 and 1< XB < p -1.

Step 2. Alice sends her public key YA = and Bob sends his public key YB =

.

PGDCS 00: Cryptography Uttarakhand Open University

 Page
37

Step 3. Both Alice and Bob agrees on the common key K= mod p =

.

Information available to the eavesdropper are prime p, generator g, public key of Alice YA and

public key of Bob YB. But to compute K from the available information requires computing

either XA, i.e., the secret key of Alice or XB, i.e., the secret key of Bob. But this reduces to

solving the discrete logarithm problem. So the key exchange scheme is secured.

In this key exchange scheme many times it becomes computationally difficult to compute the

generator g for the group . So instead of using a generator the common practice is to pick up

an element from having large order to avoid small subgroup attack. If the element picked

has a small order then the cardinality of the sub-group generated by that element will be small

and thus any brute-force algorithm will crack the discrete logarithm problem over that small

subgroup.

To avoid this problem we introduce a class of primes called safe primes. A safe prime p can

always be expressed in the form 2q+1 where q is another prime. Clearly these primes are

congruent to 3 mod 4. For any prime p, | | = p -1. Hence if p is a safe prime | | =2q.

Hence there can be only subgroups of order 1, 2 and q. Now consider the set of all quadratic

residues in . The size of this set is (p -1)/2, i.e., q. It is easy to show that this set is closed

with respect to multiplication modulo p. Hence it is a a subgroup of . This subgroup is

preferred in Diffie Hellman key exchange due to security issues related to the disclosure of the

least significant bit information to the eavesdropper. Moreover since the cardinality of this

subgroup is q, a prime number, any element of this subgroup would be the generator.

PGDCS 00: Cryptography Uttarakhand Open University

 Page
38

Attacks on Diffie Hellman Key Exchange Scheme:

The proposed Diffie Hellman key exchange scheme is susceptible to a type of attack known as

―Man-In-The-Middle‖ attack. The attack proceeds as follows:

Suppose Eve is in between Alice and Bob. Eve has 2 secret keys . Eve intercepts

YA from Alice and YB from Bob and sends to Alice and

to Bob.

Finally Alice and Eve agrees on a common key K1= and Eve and Bob agrees

on a common key K2= . Subsequent communication between Alice, Eve and

Bob takes place as follows:

PGDCS 00: Cryptography Uttarakhand Open University

 Page
39

In the above diagram E(K, m) denotes the encrypted message m with the key K.

Suppose Alice wants to communicate message m1 to Bob. She sends E(K1, m1) to Bob, i.e.,

message m1 encrypted by K1. Eve intercepts that and decrypts with K1and sends the encrypted

message E(K2, m1) to Bob. Bob decrypts that with his key K2. Similarly if Bob wants to

communicate a message m2 to Alice he sends E(K2, m2) to Alice. That encrypted text is

intercepted by Eve and decrypted with K2. Eve subsequently send the encrypted message E(K1,

m2) to Alice which she decrypts with K1 to obtain m2. Thus both Alice and Bob are completely

unaware of the presence of Eve in the middle.

Remedy:

To overcome this type of attack every message should be authenticated by the sender. In other

words the use of MAC or digital signature will eliminate this type of attack.

Reference:

1. Introduction to Algorithms , Second Edition, T. H. Cormen, C. E. Leiserson, R. Rivest and C.

Stein, Prentice Hall India .

2. Introduction to Analytic Number Theory , T. M. Apostol, Springer International .

3. Randomized Algorithms , R. Motwani & P. Raghavan, Cambridge University Press .

5.2 CRYPTOSYSTEMS BASED ON DISCRETE LOG

Massey Omura Cryptosystem:

Suppose Alice wants to send a message m to Bob. Alice locks the message m with a lock and

sends it to Bob. Bob doesn't have the key to unlock. So what Bob does he puts an additional lock

over it and sends it back to Alice. Alice unlocks her own lock and sends it back to Bob. Bob then

unlocks his own lock and recovers the message m .

Here a large prime p is publicly available. Also assume m < p .The communication is carried out

through three following steps:

Step 1. Alice chooses a private key a and locks the message m by raising it to the power a to

obtain m
a
 mod p and subsequently sends to Bob.

Step 2. Bob chooses another private key b and puts the additional lock by raising the received

content to the power b to obtain m
ab

 mod p and subsequently sends back to Alice.

PGDCS 00: Cryptography Uttarakhand Open University

 Page
40

Step 3. Alice unlocks her own lock using a
-1

 ,i.e., she computes m mod p ≡

mod p ≡ m
[k (p -1)+1] b

 mod p ≡ m
b
 mod p and sends it again to Bob.

Step 4. Bob then recovers the message m using b
-1

 after computing mod

mod p ≡ m mod p .

The security of this cryptosystem is based on the difficulty of solving the discrete logarithm

problem.

Like Diffie-Hellman key exchange scheme this cryptosystem is also susceptible to Man-In-The-

Middle-Attack . Clearly we can see Alice has no way of distinguishing Bob from Eve. So to

avoid this attack all message should be authenticated by the sender.

ElGamal Cryptosystem:

Here Bob chooses a large prime p and a generator g . Bob also chooses a secret integer a and

computes k1 = g
a
 mod p . The information (p , g , k1) is made public and is Bob's public key.

Suppose Alice now wants to send a message m to Bob where 0≤ m < p . The communication

takes place as follows:

Encryption by Alice:

1. 1. Alice downloads the public key of Bob (p , g , k1) from a public directory.

2. Alice chooses a secret random integer k and computes C1 ≡ g
k
 (mod p).

3. Alice also computes C2 ≡ k
k
1 m mod p.

4. Alice sends the pair (C1 , C2) to Bob.

In fact we can think C2 as a masked message and C1 contains the clue to unmask the message.

Decryption by Bob:

1. 1. Bob computes k2 ≡ mod p .

2. Bob decrypts by computing ≡ m mod p .

If the eavesdropper knows about Bob's secret key a then he/she can easily decrypt the message

using the same procedure adapted by Bob. But to compute a from g and k1 requires solving the

discrete logarithm problem.

Also computing the integer k from C1 , g and p requires solving the discrete logarithm problem.

PGDCS 00: Cryptography Uttarakhand Open University

 Page
41

It should be noted that k should be a random integer and should vary in each run. Otherwise if

the same k is used in 2 sessions (for two distinct messages) it possible to break ElGamal

Cryptosystem. The attack is explained as follows:

Assumption: The attacker Eve had somehow came to know the plaintext m in the session when

Alice used the secret random integer k .

If Alice uses the same secret random integer k in another session for the message m' then she will

send the pair (C1 , C3) to Bob where .

Now . Since Eve knows all C2 ,

C3 , m and p she can compute m' .

Thus the heart of the cryptosystem is based on discrete log.

Like Diffie-Hellman key exchange scheme this cryptosystem is also susceptible to Man-In-The-

Middle-Attack . Clearly we can see Bob has no way of distinguishing Alice from Eve. So to

avoid this attack all message should be authenticated by the sender.

PGDCS 00: Cryptography Uttarakhand Open University

 Page
42

UNIT VI: PUBLIC KEY CRYPTOSYSTEM

6.1 PUBLIC KEY CRYPTOSYSTEM & RSA

Suppose Alice wants to send some message M to Bob. But she cannot allow any other person to

know the content of M. So she has to send her message in an encrypted format that can be

decrypted only by Bob and not by any third party / eavesdropper. In public key cryptosystem this

is achieved as follows:

Each party has a pair of public and secret key. So Bob had public key PB and secret key SB . All

public keys of different parties are maintained in a public directory. So Alice first finds the

public key PB of Bob from the public directory. She then encrypts the message M with the public

key PB and obtains the encrypted message or cipher-text C = PB (M). This cipher-text C is sent to

Bob across the communication channel. After Bob receives the cipher-text C he decrypts using

his secret key SB to get SB (C) = SB (PB (M)) = M, the original message back.

So in this cryptosystem we have to ensure two things :

 i. SB should be the inverse of PB .

ii. In spite of the knowledge of PB it is computationally infeasible to an eavesdropper to

determine SB .

One important issue that is left is how a message M is represented. It is usually represented by an

integer obtained as below.

M: ―I am fine.‖

PGDCS 00: Cryptography Uttarakhand Open University

 Page
43

In the above message there are 9 distinct alphabets including blank. So we can use a number

system of base 9 and assign the code to each alphabet as follows:

Alphabet Code

. 0

I 1

a 2

e 3

f 4

i 5

m 6

n 7

― ― 8

So the message string M is mapped to the integer: 9
10

 x 1 + 9
9
 x 8 + 9

7
 x 2 + 9

6
 x 6 + 9

5
 x 8 + 9

4

x 4 + 9
3
 x 5 + 9

2
 x 7 + 9

1
 x 3 + 9

0
 x 0. We can uniquely determine the string M back given this

integer in base 9.

DIGITAL SIGNATURES

Alice signs the message M' by appending her digital signature σ = SA(M') to it. She transmits the

message/signature pair (M', σ) to Bob, who verifies it by checking the equation M' = PA(σ). If

the equation holds, he accepts (M', σ) as a message that has been signed by Alice.

PGDCS 00: Cryptography Uttarakhand Open University

 Page
44

• Alice computes her digital signature s for the message M' using her secret key SAand the

equation σ = SA(M').

• Alice sends the message/signature pair (M', σ) to Bob.

• When Bob receives (M',σ), he can verify that it originated from Alice by using Alice's public

key to verify the equation M' = PA(σ). (Presumably, M' contains Alice's name, so Bob knows

whose public key to use.) If the equation holds, then Bob concludes that the message M' was

actually signed by Alice. If the equation doesn't hold, Bob concludes either that the message M'

or the digital signature s was corrupted by transmission errors or that the pair (M',σ) is an

attempted forgery. Digital signature provides both authentication of the signer's identity

Sometimes a variation of the above approach is used for digital signatures. Here a one-way hash

function h () is used. The hash function h () is public. These hash functions are called

cryptographic has functions. Given a message M it is easy to compute h (M) but it is

computationally infeasible to find two messages M and M' such that h (M) = h (M') . So Alice

applies her secret key SA over

h (M') and not over M'. So the digital signature σ = SA(h (M')). Now she sends the pair (M',σ) to

Bob. Bob cannot compute h
-1

(). So in the first step he applies Alice's public key PA over s to

obtain PA(σ) = PA(σA(h (M')))= h (M'). In the second step Bob applies the public hash function

over the first component of the pair (M', σ), i.e., M'to obtain h (M'). Bob accepts the signature as

valid if and only if the results obtained in the two steps are equal. Otherwise he rejects the

signature. This may happen either due to error in transmission or due to tampering by an

eavesdropper. So he will ask Alice to retransmit the message-signature pair again.

Exercise Question: Alice's signature can be verified by any person including Bob. What Alice

must do to ensure that only Bob can verify her signature?

RSA Public Key Cryptosystem

The cryptosystem is set up as follows:

 1. Choose two large random and distinct primes p and q 100 – 200 digit each roughly of

the same size.

2. Compute n = pq

3. Compute Φ(n) = n (1-1/ p)(1-1/ q) = (p -1)(q -1).

4. Pick an integer e that is relatively prime to Φ (n), i.e., gcd (e , Φ (n)) = 1.

PGDCS 00: Cryptography Uttarakhand Open University

 Page
45

5. Compute d the multiplicative inverse of e modulo Φ (n), i.e., ed ≡ 1 mod Φ (n).

6. Publish the pair (e , n) as the RSA public key .

7. Retain the pair (d , n) as the RSA secret key .

Suppose Alice wants to send a message M to Bob. Assume M<n . So Alice encrypts M with the

public key d of Bob to obtain the cipher-text C = M
d
 mod n . She sends C to Bob. Bob decrypts

the cipher C using his secret key d to get C
d
 mod n ≡ M

ed
 mod n ≡ M mod n . Eve knows C, e and

n . But to determine M she has to determine d for which she has to compute Φ(n). Since Φ(n) = n

(1-1/ p)(1-1/ q) = (p -1)(q -1), for Bob it is easy to compute Φ(n) since he knows both p and q .

But this computation for Eve requires factoring n . So it is computationally infeasible for Eve to

determine d .

Correctness of RSA is established via following argument:

We know M ∈ Zn since M ∈ Z ∈ ∧ M < n .

Since e and d are multiplicative inverses we have ed ≡ 1 mod Φ (n), i.e., ed = 1 + k (p -1)(q -1)

for some integer k .

Now if M ≠ 0 mod p, we have:

M
ed

≡ M(M

k(p -1)(q -

1)
)

mod p

 ≡ M(M
(p -1)k(q -1)

 mod p

 ≡ M(1)
k(q -1)

 mod p [Applying Fermat's Theorem]

 ≡ M mod p

Again if M ≡ 0 mod p then trivially M
ed

 ≡ M mod p .

Thus for all M∈Zn we have:

M
ed

 ≡ M mod p - - - - - - - - - - - - - - (1)

Similarly for all M∈Zn we have:

M
ed

 ≡ M mod q - - - - - - - - - - - - - - (2)

Combining (1) and (2) using Chinese Remainder Theorem we have:

M
ed

 ≡ M mod n

for all M.

PGDCS 00: Cryptography Uttarakhand Open University

 Page
46

Computationally hard assumption for RSA algorithm is the difficulty of factoring the modulus n

. If n can be factorized in polynomial time to obtain p and q then the attacker can break the

cipher in polynomial time. This is because the attacker will know Φ (n) =(p -1)(q -1) and then

by using EXTENDED-EUCLID algorithm d can be computed. Conversely if the attacker can

figure out the decryption key d then the attacker can come to know k Φ (n) since ed ≡ 1 modΦ (

n) ⇒ ed = 1+ k Φ (n) for some integer k . Then using the randomized algorithm discussed in

Lecture-1 Module-5 the attacker can factorize n in polynomial time.

RSA is frequently used in hybrid mode with fast non-public key cryptosystem. It is combined

with cryptosystems for which encryption and decryption keys are identical like DES or AES.

RSA is used to transmit the key. But the original message is encrypted as a symmetric cipher.

Suppose the key required for symmetric encryption is K. So the message M is encrypted with K

to obtain the symmetric cipher E(K, M). But the receiving party Bob doesn't know K. So the

sender Alice encrypts K in RSA with receiver's public key PB to obtain PB (K). She then sends to

Bob E(K, M) || PB (K). Bob after receiving applies his own secret key SB over PB (K) to obtain K.

He then applies K over the first component for symmetric decryption to retrieve M.

6.2 CHOICE OF THE PUBLIC KEY

RSA Contd.

Choice of the Public Key: To speed up the modular exponentiation operation it is desirable that

the public key has lot of 0 bits. Usual choice of public key is of the form 2
k
+1 since this will

have exactly two zeros. Common choice of public keys are 3, 17 and 65537 (= 2
16

+1).

If the public key is very small then RSA is vulnerable to the following attack:

Suppose the encryption / public key is e = 3 used by three different users A, B and C having 3

distinct moduli namely n1, n2 and n3. Suppose the sender X wants to send the same message M to

A, B and C.So he encrypts all of them with the same public key e and computes the cipher texts

CA= M
e
 mod n1, CB= M

e
 mod n2 and CC= M

e
 mod n3 respectively.

PGDCS 00: Cryptography Uttarakhand Open University

 Page
47

Suppose it happens to be n1, n2 and n3 are pairwise relatively prime and n1
*
n2

*
n3 > M

e
. This can

only happen if e is very small. In our case let us assume M
 3

<n1
*
n2

*
n3 since e = 3 though M

 3
 is

larger than each n1, n2 and n3. Then using Chinese Remainder Theorem the attacker can easily

compute M
 3

 and thus can determine M after computing the cube root.

Operations using the secret key:

For the decryption operation we perform the following modular exponentiation operation to

retrieve the original message M:

M = C
d
 mod n where C is the cipher text, d is the secret key and n = pxq where p and q are two

large primes. To speed up this operation we compute:

Vp = C
d
 mod p and Vq = C

d
 mod q

From these using to compute C
d
 mod n we have to use Chinese Remainder Theorem.

So we compute:

Xp = q x (q
-1

 mod p) and Xq = p x (p
-1

mod q)

Now we retrieve M as follows:

M = (VpXp + VqXq) mod n

To speed up the two modular exponentiation operations to compute Vp and Vq we can make use

of Fermat‘s theorem as follows:

a
b
 mod p = a

 y
 mod p

where b = (p-1)x + y since a
 p -1

≡ 1 mod p.

Attacks on RSA:

There are several attacks on RSA public key cryptosystem. They are categorized as follows:

1. Brute Force Attack: Here the attacker tries with different secret keys.

2. Mathematical Attacks: Most of these approaches finally broil down to factoring RSA

modulus.

PGDCS 00: Cryptography Uttarakhand Open University

 Page
48

3. Timing Attack: This attack uses the timing difference of modular exponentiation

algorithm depending on the number of 0 bits and 1 bits in the secret key. We will

elaborate on this later.

4. Chosen Cipher Text Attack (CCA).

Mathematical Attack:

Here we prove that if the attacker can figure out the secret key d in polynomial time then we

have a randomized polynomial time algorithm to factor n.

Choose a random number r∈Zn
*
. Since both e and d are known we know ed – 1 = k.Φ(n). Thus

from Euler‘s theorem r
ed-1

≡ 1 mod n.The goal here is to obtain a non-trivial square root of 1. For

this we keep on computing … and so on till we get either -1 or a non-trivial square

root of 1 or is no longer divisible by 2. If we obtain -1 or is no longer divisible by

2 we repeat the above procedure selecting a new random number r. Otherwise if we get a non-

trivial square root of 1, i.e., x such that x
2
 ≡1 mod n and x ≠ ±1 then gcd (x+1, n) or gcd (x-1, n)

will give a non-trivial factor of n (i.e., 1 or n). Thus we have a randomized polynomial time

algorithm to factorize n.

Chosen Cipher Text Attack:

Here the attacker Eve gets holds of a cipher text C that was sent by Alice to Bob. Let M be the

corresponding plaintext. Thus M = Ce mod n. The attack proceeds as follows:

1. 1. Eve selects a random number r, such that 1 < r < n-1 and gcd(r,n) =1.

1. 2. Eve computes X = r
e
 C mod n and submits to Bob as a chosen cipher text.

1. 3. Eve receives back the signed message from Bob Y = X
d
 mod n = rM mod n.

1. 4. Since Eve know r
 -1

 she retrieves the message M = r
 -1

Y mod n.

Remedies:

To overcome this attack the plaintext is usually padded prior to encryption. Method like optimal

asymmetric encryption scheme (OAEP) has been proposed to overcome such attacks.

Reference:

1. Cryptography and Network Security , William Stallings, Prenctice Hall India .

PGDCS 00: Cryptography Uttarakhand Open University

 Page
49

6.3 ATTACKS ON RSA & REMEDIES

Timing Attack:

This attack was first suggested by Paul Kocher in 1995. He showed that it is possible to find out

the secret key by careful examination of the computation times in a series of decryption

procedure. The method uses the weakness of modular exponentiation algorithm and can be used

to attack not only RSA but also any other cryptographic algorithms that use modular

exponentiation that includes algorithms based on discrete log computation.

Suppose Eve sends to Bob several ciphertexts y. After decryption of each ciphertext Bob sends

the acknowledgement back to Eve. Thus Eve comes to know the decryption time of each

ciphertext. From this timing information Eve has to figure out the decryption exponent d.

We need to assume that Eve knows the hardware being used to to calculate y
d
 (mod n). Eve can

use this information to calculate the computation time of various steps that occur in this process.

Let d=b1b2…bw be written in binary. Let y and n be integers. We perform the modular

exponentiation using the following algorithm:

1. Start with k=1 and s1=1.

2. If bk==1, let rk ≡ sk y(mod n). If bk == 0, let rk=sk.

3. Let sk+1≡ (mod n).

4. If k==w, stop. If k<w, add 1 to k and go to (3).

Finally rw ≡ y
d
 (mod n).

Here we note that the multiplication sk y occurs only when the bit bk==1. In practice there is a

large variation in timing of this multiplication operation.

Now we need to introduce few notations from Probability & Statistics. Let t denote the random

variable for the time taken for the decryption of a ciphertext y.

Let t1, t2, …, tn denote the decryption time of ciphertexts y1, y2, …, yn. The mean is denoted by :

Mean(t) = m =

The variance of the random variable t is denoted by:

Var(t) =

PGDCS 00: Cryptography Uttarakhand Open University

 Page
50

If we break up the computation time ti for the decryption of the ciphertext yi into two

independent random processes with computation times and respectively such that t i= +

, then Var(ti) = Var() + Var().

Eve knows t1, t2, …, tn. Suppose she knows bits b1b2…bk-1of the secret key d. Since she knows the

hardware she can figure out the time required for computing r1, r2, …rk-1 in the modular

exponentiation algorithm. Also she can determine the time to calculate sk+1≡ (mod n) when

bk== 0 since rk = sk. Thus she knows the remaining computation time xi for each ciphertext yi to

compute rk, …, rw.

Let be the computation time for sk y(mod n) if the bit bk==1. Eve still doesn’t know bk.

Let =xi - . Eve computes Var(xi) and Var(). If Var(xi) > Var() Eve concludes bk

= 1 else bk = 0. After determining bk Eve proceeds in the same manner to determine the

remaining bits of the secret key.

Correctness Proof: If bk= 1 then the multiplication sk y(mod n) indeed occurs. It is reasonable

to assume and are independent and thus:

Var(xi) = Var() + Var() > Var().

If bk= 0 then the multiplication does not occur and = Var() 0. Thus

Var(xi) = Var() + Var() Var().

Remedies:

i) Constant Exponentiation Time: Timing attack can be avoided if Bob sends the

acknowledgement back after the same fixed amount of time for each ciphertext. This solves the

problem but the performance is degraded.

PGDCS 00: Cryptography Uttarakhand Open University

 Page
51

ii) Random Delay: Here Bob sends back the acknowledgement after adding a random delay

after the end of each modular exponentiation computation. This is susceptible to attack since the

attacker can compensate the added random delay considering it as fluctuation over the d.c

(average) component.

 iii) Blinding: This proceeds as follows:

1. 1. Bob selects a random number r, such that 1 < r < n-1 and gcd(r,n) =1.

2. Bob computes X = r
e
 C mod n, where e is the public key.

3. Bob Computes Y = X
d
mod n = rMmod n.

4. Since Bob knows r
-1

 he retrieves the message M = r
-1

Y mod n.

This process prevents the attacker in knowing what cipher text bits are being processed and

prevents bit by bit analysis that is essential for the timing attack.

Reference:

1. Introduction to Cryptography with Coding Theory , W. Trappe and L. C. Washington,

Pearson Education .

2. Cryptography and Network Security , William Stallings, Prenctice Hall India .

6.4 RABIN CRYPTOSYSTEM

Rabin Cryptosystem:

Rabin cryptosystem is described as follows:

Let n be the product of two distinct primes p and q, p, q ≡ 3 (mod 4)

Let P, C ∈ Zn , where P is the plaintext and C is the cipher text.

Define

 K = {(n, p, q, B) : 0 ≤ B ≤ n-1}

 For K = (n, p, q, B), define

 eK(x) = x(x+B) mod n

and

The values n and B are public, while p and q are secret.

The encryption function eK is not an injection, so decryption cannot be done in an unambiguous

fashion. In fact, there are four possible plaintexts that could be the encryption of any given

PGDCS 00: Cryptography Uttarakhand Open University

 Page
52

ciphertext. It is easy to verify that if ω is a nontrivial square root of 1 modulo n, then there

are four decryptions of eK (x) for any x∈ Zn:

Example:

So the decryption process won‘t be unique unless the plaintext contains sufficient redundancy to

eliminate three pf these four values.

The decryption process is analyzed as follows:

Given a ciphertext y, the plaintext x is determined by the solving the equation

x
2
 + Bx ≡ y (mod n)

Substituting x = x1 – B/2, the above equation reduces to

x1
2
 – B x1 + B

2
/ 4 + Bx1– B

2
/ 2 – y ≡ 0 (mod n)

or

x1
2
 ≡ B

2
 / 4 + y (mod n)

Let C = B
2
 / 4 + y, then we can rewrite the congruence as

 x1
2
 ≡ C (mod n)

So, decryption reduces to extracting square roots modulo n. This is equivalent to solving the two

congruences

 x1
2
 ≡ C (mod p)

and

 x1
2
 ≡ C (mod q)

Now there are two square roots of C modulo p and two square roots of C modulo q. Using the

Chinese remainder theorem, these can be combined to yield four solutions modulo n. Also it can

be determined by Euler‘s criterion if C is a quadratic residue modulo p (and modulo q). Infact, C

will be a quadratic residue modulo p (and modulo q) if encryption is performed correctly.

When p ≡ 3 (mod 4), there is a simple formula to compute square roots of quadratic residues

modulo p. Suppose C is a quadratic residue and p ≡ 3 (mod 4). Then we have that

PGDCS 00: Cryptography Uttarakhand Open University

 Page
53

Here, we again make use of Euler‘s criterion, which says that if C is a quadratic residue modulo

p, then ≡ 1 (mod p). Hence the two square roots of C modulo p are .

In a similar fashion, the two square roots of C modulo q are . One can then

obtain the four square roots x1 of C modulo n using the Chinese Remainder Theorem

Example:

Let us illustrate the encryption and decryption procedures for the Rabin cryptosystem with a toy

example. Suppose n = 77 = 7 x 11 and B = 9. Then the encryption function is

eK(x) = x
2
 + 9xmod 77

and the decryption function is

Suppose the ciphertext y = 22. Compute the square roots of 23 modulo 7 and modulo 11. Since 7

and 11 are both congruent to 3 mod 4, using the formula derived above, we have

≡ 22 ≡ 4 mod 7

≡ 13 ≡ 1 mod 11

Using Chinese Remainder Theorem, we compute the four square roots of 23 modulo 77 to be

±10 and ±32 mod 77.

Finally, the four possible plaintexts are

 10 – 63 mod 77 = 44

 67 – 43 mod 77 = 24

 32 – 43 mod 77 = 66

 45 – 43 mod 77 = 2

The computationally hard problem in this cryptosystem is the difficulty of factoring the modulus

n. In contrary let us assume that the adversary can figure out the square roots modulo n . Since n

is the product of two primes there will be 4 square roots x1 , x2 , x3 and x4 such that

PGDCS 00: Cryptography Uttarakhand Open University

 Page
54

mod n. Among these 4 square roots there will be a pair such that xi mod n ≠ ±

xj mod n for some i , j ∈ [1..4]. Then gcd (xi + xj , n) or gcd (xi - xj , n) will give a non trivial

factor of n. Thus if we can break the cryptosystem in polynomial time we will be able to factor n

in polynomial time.

Reference:

1. Cryptography Theory and Practice , D. R. Stinson, CRC Press .

PGDCS 00: Cryptography Uttarakhand Open University

 Page
55

UNIT VII: FACTORIZATION

7.1 CURRENT STATE OF THE ART

Current state of the art

 Factorization of integer in polynomial time is still to date an unresolved problem. Cryptographic

algorithms like RSA, Rabin all rely upon the difficulty of integer factorization problem. Even to

date factoring large integers with very fast computers require a lot of computing time. There are

some efficient pseudo polynomial time algorithms known for the factoring problem.

Difficulty and complexity

If a large, b-bit number is the product of two primes that are roughly the same size, then no

algorithm is published that can factor in polynomial time. That means there is no widely known

algorithm that can factor it in time O(b
k
) for any constant k. In other words, there are algorithms

which are super-polynomial but sub- exponential. In particular, the best published asymptotic

running time is for the general number field sieve (GNFS) algorithm, which, for a b-bit number

n, is:

For an ordinary computer, GNFS is the best published algorithm for large n (more than about

100 digits). For a quantum computer, however, Peter Shor discovered an algorithm in 1994 that

solves it in polynomial time. This will have significant implications for cryptography if a large

quantum computer is ever built. Shor's algorithm takes only O(b
3
) time and O(b) space on b-bit

number inputs. In 2001, the first 7-qubit quantum computer became the first to run Shor's

algorithm. It factored the number 15.

It is not known exactly which complexity classes contain the integer factorization problem. The

decision-problem form of it ("does N have a factor less than M?") is known to be in both NP and

co-NP. This is because both YES and NO answers can be trivially verified given the prime

factors (whose correctness can be verified using the AKS primality test). It is known to be in

BQP because of Shor's algorithm. It is suspected to be outside of all three of the complexity

classes P, NP-Complete, and co-NP-Complete. If it could be proved that it is in either NP-

PGDCS 00: Cryptography Uttarakhand Open University

 Page
56

Complete or co-NP-Complete, that would imply NP = co-NP. That would be a very surprising

result, and therefore integer factorization is widely suspected to be outside both of those classes.

Many people have tried to find classical polynomial-time algorithms for it and failed, and

therefore it is widely suspected to be outside P.

Interestingly, the decision problem "is N a composite number?" (or equivalently: "is N a prime

number?") appears to be much easier than the problem of actually finding the factors of N.

Specifically, the former can be solved in polynomial time (in the number n of digits of N) with

the AKS primality test. In addition, there are a number of probabilistic algorithms that can test

primality very quickly if one is willing to accept the small possibility of error. The easiness of

primality testing is a crucial part of the RSA algorithm, as it is necessary to find large prime

numbers to start with.

Trial division

 Trial division is the simplest and easiest to understand of the integer factorization algorithms.

Given an odd composite integer n there must be a prime factor less than . Thus we need to

test for all primes that divides n . Let π(n) denote the number of primes less than n .

From the prime number theorem we have the following:

Thus we have to test for all prime factors of n . From the previous theorem we have:

If a v a riant is used without pri m ality testing, but si m ply dividing by every odd nu m ber less

than the square root of n , pri m e or not, it can take up to about

trial divisions which for large n is worse.

PGDCS 00: Cryptography Uttarakhand Open University

 Page
57

If n has small prime factors then this algorithm performs quite well. This means that for n with

large p rime factors of similar size (like those used in public key cryptography), trial division is

computation a lly infeasible. For most significant factoring concerns, however, other algorithms

are more efficient and therefore feasible.

Given a composite integer n(throughout this article, n means "the integer to be factored"), trial

division consists of trial-dividing n by every prime number less than or equal to . If a

number is found which divides evenly into n, that number is a factor of n.

A definite bound on the prime factors is possible. Suppose P(i) is the i'th prime, so that P(1) = 2,

P(2) = 3, etc. Then the last prime number worth testing as a possible factor o n is P(i) where P(i

+ 1)
2
 > n; equality here would mean that P(i + 1) was a factor. This is all very well, but usually

inconvenient to apply for the inspection of a single n since determining the correct value for i is

more effort than simply trying the one unneeded candidate P(i + 1) that would be involved in

testing with all P(i) such that

. Should the square root of n be integral, then it is a factor and n is a

Perfect square, not that this is a good way of finding them.

Trial division is guaranteed to find a factor of n, since it checks all possible prime factors of n.

Thus, if the algorithm finds no factor, it is proof that n is prime.

In the worst case, trial division is a laborious algorithm. If it starts from 2 and works up to the

square root of n, the algorithm requires

trial divisions, where π(x) denotes the prime counting function, the number of primes less than x.

This does not take into account the overhead of primality testing to obtain the prime numbers as

candidate factors. If a variant is used without primality testing, but simply dividing by every odd

number less than the square root of n, prime or not, it can take up to about

trial divisions which for large n is worse.

This means that for n with large prime factors of similar size (like those used in public key

PGDCS 00: Cryptography Uttarakhand Open University

 Page
58

cryptography), trial division is computationally infeasible.

However, for n with at least one small factor, trial division can be a quick way to find that small

factor. It is worthwhile to note that for random n, there is a 50% chance that 2 is a

factor of n, and a 33% chance that 3 is a factor, and so on. It can be shown that 88% of all positive

integers have a factor under 100, and that 91% have a factor under 1000.

For most significant factoring concerns, however, other algorithms are more efficient and therefore

feasible.

Pollard's p-1 algorithm [4]

Pollard's p − 1 algorithm is a number theoretic integer factorization algorithm, invented by

John Pollard in 1974. It is a special-purpose algorithm, meaning that it is only suitable for

integers with specific types of factors.

The algorithm is based on the insight that numbers of the form a
b
 − 1 tend to be highly

composite when b is itself composite. Since it is computationally simple to evaluate numbers of

this form in modular arithmetic, the algorithm allows one to quickly check many potential

factors with great efficiency. In particular, the method will find a factor p if b is divisible by p −

1, hence the name. When p − 1 is smooth (the product of only small integers) then this algorithm

is well-suited to discovering the factor p.

Base concepts

Let n be a composite integer with prime factor p. By Fermat's little theorem, we know that

for a coprime to p

Let us assume that p − 1 is B-powersmooth for some reasonably sized B (more on the selection

of this value later). Recall that a positive integer m is called B-smooth if all prime factors pi of

m are such that pi ≤ B. m is called B-powersmooth if all prime powers

i dividing m are such that pi i ≤ B.

Let p1, ..., pL be the primes less than B and let e1, ..., eL be the exponents such that

Let

PGDCS 00: Cryptography Uttarakhand Open University

 Page
59

As a shortcut, M = lcm{1, ..., B}. As a consequence of this, (p − 1) divides M, and also if p
e

divides M this implies that p
e
 ≤ B. Since (p − 1) divides M we know that a

M
 ≡ 1 (mod p), and

because p divides n this means gcd(a
M

 − 1, n) > 1.

Therefore if gcd(a
M

 − 1, n) ≠ n, then the gcd is a non-trivial factor of n.

If p − 1 is not B-power-smooth, then a
M

 ≢ 1 (mod p) for at least half of all a.

Pollard concepts

Let n = pqr, where p and q are distinct primes and r is an integer, such that p − 1 is B-

powersmooth and q − 1 is not B-powersmooth. Now, gcd(a
M

 − 1, n) yields a proper factor of n.

In the case where q − 1 is B-powersmooth, the gcd may yield a trivial factor because q divides a

M
− 1. This is what makes the algorithm specialized. For example, 172189 = 421

× 409. 421 − 1 = 2
2
×3×5×7 and 409 − 1 = 2

3
×3×17. So, an appropriate value of B would be from

7 to 16. If B was selected less than 7 the gcd would have been 1 and if B was selected higher

than 16 the gcd would have been n. Of course, we do not know what value of B is appropriate in

advance, so this will factor into the algorithm.

To speed up calculations, we also know that when taking the gcd we can reduce one part modulo

the other, so gcd(a
 M

 − 1, n) = gcd(a
M

 − 1 mod n, n). This can be efficiently calculated using

modular exponentiation and the Euclidean algorithm.

Algorithm and running time

The basic algorithm can be written as follows:

Inputs: n: a composite integer

Output: a non-trivial factor of n or failure

1. select a smoothness bound B

2. randomly pick a coprime to n (note: we can actually fix a, random selection here is not

imperative)

3. for each prime q ≤ B

PGDCS 00: Cryptography Uttarakhand Open University

 Page
60

a ← a
qe

 mode n (note: this is a
M

)

4. g ← gcd(a − 1, n)

5. if 1 < g < n then return g

6. if g = 1 then select a higher B and go to step 2 or return failure

7. if g = n then go to step 2 or return failure

If g = 1 in step 6, this indicates that for all p − 1 that none were B-powersmooth. If g = n in step

7, this usually indicates that all factors were B-powersmooth, but in rare cases it could indicate

that a had a small order modulo p.

The running time of this algorithm is O(B × log B × log
2
n), so it is advantageous to pick a small

value of B.

7.2 LARGE PRIME VARIANT

Large prime variant

A variant of the basic algorithm is sometimes used. Statistically, there is often a factor p of n

such that p − 1 = fq such that f is B-powersmooth and B < q ≤ B', where q is a prime and B' is

called a semi-smoothness bound.

As a starting point, this would work into the basic algorithm at step 6 if we encountered gcd = 1

but didn't want to increase B. For all primes B < q1, ..., qL ≤ B', we check if

to obtain a non-trivial factor of n. This is quickly accomplished, because if we let c = a
M

, and d1

= q1 and di = qi − qi − 1, then we can compute

The running time of the algorithm with this variant then becomes O(B' × log B' × log
2
n).

Additional information

Because of this algorithm's effectiveness on certain types of numbers the RSA specifications

require that the primes, p and q, be such that p-1 and q-1 are non-B- power-smooth for small

values of B.

PGDCS 00: Cryptography Uttarakhand Open University

 Page
61

Williams' p plus 1 algorithm[5]

In computational number theory, Williams' p + 1 algorithm is an integer factorization algorithm

invented by H. C. Williams.

It works well if the number N to be factored contains one or more prime factors p such that p + 1

is smooth, i.e. p + 1 contains only small factors. It uses Lucas sequences. It is analogous to

Pollard's p-1 algorithm.

Algorithm

Choose some integer A greater than 2 which characterizes the sequence:

V0 = 2,V1 = A,Vj = AVj-1 −Vj-2

where all operations are performed modulo N.

Then any odd prime p divides gcd(N,VM− 2) whenever M is a multiple of p − (D / p), where D =

A
2
 − 4 and (D / p) is the Jacobi symbol.

We require that (D / p) = − 1, that is, D should be a quadratic non-residue modulo p. But as we

don't know p beforehand, more than one value of A may be required before finding a solution. If

(D / p) = + 1, this algorithm degenerates into a slow version of Pollard's p-1 algorithm.

So, for different values of M we calculate gcd(N,VM− 2), and when the result is not equal to 1 or

to N, we have found a non-trivial factor of N. The values of M used are successive factorials, and

VM is the M-th value of the sequence characterized by VM-1.

To find the M-th element V of the sequence characterized by B, we proceed in a manner similar

to left-to-right exponentiation:

x=B

y=(B^2-2) mod N

for each bit of M to the right of the most significant bit if the bit is 1

 x=(x*y-B) mod N

 y=(y^2-2) mod N

else

 y=(x*y-B) mod N

 x=(x^2-2) mod N

V=x

Example

With N=112729 and A=5, successive values of VM are: V1

PGDCS 00: Cryptography Uttarakhand Open University

 Page
62

of seq(5) = V1! of seq(5) = 5

V2 of seq(5) = V2! of seq(5) = 23

V3 of seq(23) = V3! of seq(5) = 12098

V4 of seq(12098) =V4! of seq(5) = 87680

V5 of seq(87680) = V5! of seq(5) = 53242

V6 of seq(53242) = V6! of seq(5) = 27666

V7 of seq(27666) = V7! of seq(5) = 110229

At this point, gcd(110229-2,112729) = 139, so 139 is a non-trivial factor of 112729. Notice that

p+1 = 140 = 2 × 5 × 7. The number 7! is the lowest factorial which is multiple of 140, so the

proper factor 139 is found in this step.

Lenstra elliptic curve factorization[6]

Lenstra elliptic curve factorization or the elliptic curve factorization method (ECM) is a

fast, sub-exponential running time algorithm for integer factorization which employs elliptic

curves. Technically, the ECM is classified as a deterministic algorithm as all "random" steps

(such as the choice of curves) used can be de-randomized and done in a deterministic way. (This

is not to say that the algorithm can't be implemented in a probabilistic way, if one so chooses,

provided one has a true source of randomness.)

For factoring ECM is the third-fastest known factoring method. The second fastest is the

multiple polynomial quadratic sieve and the fastest is the general number field sieve; both are

probabilistic algorithms.

Practically speaking, ECM is considered a special purpose factoring algorithm as it is most

suitable for finding small factors. Currently, it is still the best algorithm for divisors not greatly

exceeding 20 to 25 digits (64 to 83 bits or so), as its running time is

dominated by the size of the smallest factor p rather than by the size of the number n to be

factored. The largest factor found using ECM so far was discovered on August 24, 2006 by B.

Dodson and has 67 digits[7]. Increasing the number of curves tested improves the chances of

finding a factor, but they are not linear with the increase in the number of digits.

PGDCS 00: Cryptography Uttarakhand Open University

 Page
63

Derivation

ECM is at its core an improvement of the older p-1 algorithm. The p-1 algorithm finds prime

factors p such that p-1 is B-powersmooth for small values of b. For any e, a multiple of p-1, and

any a relatively prime to p, by Fermat's little theorem we have a
e
 ≡ 1

(mod p). Then gcd(a
e
-1, n) is likely to produce a factor of n. However, the algorithm fails when

p-1 has large prime factors, as is the case for numbers containing strong primes, for

example.

ECM gets around this obstacle by considering the group of a random elliptic curve over the finite

field Zp, rather than considering the multiplicative group of Zp which always has order p-1.

The order of the group of an elliptic curve over Zp varies (randomly) between p + 1 - 2√p and p

+ 1 + 2√p by Hasse's theorem, and is likely to be smooth for some elliptic curves. Although there

is no proof that a smooth group order will be found in the Hasse-interval, by using heuristic

probabilistic methods, the Canfield-Erdös-Pomerance theorem with suitably optimized parameter

choices, and the L-notation, we can expect to try L[√2 / 2, √2] curves before getting a smooth

group order. This heuristic estimate is very reliable in practice.

Lenstra's elliptic curve factorization

The Lenstra elliptic curve factorization method to find a factor of the given number n

works as follows:

 • Pick a random elliptic curve over Z with a point A on it. Then, we consider the group

law on this curve mod n — this is possible since almost all residues mod n have inverses,

which can be found using the Euclidean algorithm, and finding a noninvertible residue is

tantamount to factoring n.

• Compute eA in this group, where e is product of small primes raised to small powers, as

in the p-1 algorithm. This can be done one prime at a time, thus efficiently.

• Hopefully, eA is a zero element of the elliptic curve group in Zp, but not in Zq for

another prime divisor q of n (as in the p-1 method, it is unlikely that both groups will

have an order which is a divisor of e). Then we can find a factor of n by finding the

greatest common divisor of the first coordinate of A and n, since this coordinate will be

zero in Zp.

PGDCS 00: Cryptography Uttarakhand Open University

 Page
64

• If it does not work, we can try again with some other curve and starting point.

The complexity depends on the size of the factor and can be represented by, where p is the

smallest factor of n.

7.3 DIXON'S FACTORIZATION METHOD

Dixon's factorization method

In number theory, Dixon's factorization method (also Dixon's algorithm) is a general- purpose

it is the prototypical factor base method, and the only factor base method for which a run-time

bound not reliant on conjectures about the smoothness properties of values of a polynomial is

known. The algorithm was designed by John D. Dixon, a mathematician at Carleton University,

and was published in 1981.

Basic idea

Dixon's method is based on finding a congruence of squares modulo the integer N which we

intend to factor. Fermat's factorization algorithm finds such a congruence by selecting random or

pseudo-random xvalues and hoping that the integer x
2
 mod N is the square of an integer . :

For example, if N=84923, we notice (by starting at 292, the first number greater than and

counting up) that 505
2

mod 84923 is 256, the square of 16. So(505-16)(505+16)=0 mod N.

Computing the GCD of 505-16 and N using Euclid's algorithm gives us 163, which is a factor of

N.

In practice, selecting random x values will take an impractically long time to find a congruence

of squares, since there are so few squares less than N.

Dixon's method replaces the condition 'is the square of an integer' with the much weaker one 'has

only small prime factors'; for example, there are 292 squares less than 84923,

662 numbers whose prime factors are only 2,3,5 or 7, and 4767 whose prime factors are all less

than 30.

If we have lots of numbers whose squares can be factorised as

PGDCS 00: Cryptography Uttarakhand Open University

 Page
65

for a fixed set of small primes, linear algebra modulo 2

on the matrix eij will give us a subset of the ai whose squares combine to a product of small

primes to an even power -- that is, a subset of the ai whose squares combine to a square.

Method

Firstly, a set of primes less than some bound B is chosen. This set of primes is called the factor

base. Then, using the polynomial

p(x) = x
2
(mod n)

many values of x are tested to see if p(x) factors completely over the factor base. If it does, the

pair (x, p(x)) is stored. Such a pair is called a relation. Then, once the number of relations

collected exceeds the size of the factor base, we can enter the next stage.

The p(x) values are factorized (this is easy since we are certain they factorize completely over the

factor base) and the exponents of the prime factors are converted into an exponent vector mod 2.

For example, if the factor base is {2, 3, 5, 7} and the p(x) value is

30870, we have:

30870 = 2
1
.3

2
.5

1
.7

3

This gives an exponent vector of:

If we can find some way to add these exponent vectors together (equivalent to multiplying the

corresponding relations together) to produce the zero vector (mod 2), then we can get a

congruence of squares. Thus we can put the exponent vectors together into a matrix, and

formulate an equation:

PGDCS 00: Cryptography Uttarakhand Open University

 Page
66

This can be converted into a matrix equation:

This matrix equation is then solved (using, for example, Gaussian elimination) to find the vector

c. Then:

where the products are taken over all k for which Ck= 1. At least one of the Ckmust be one.

Because of the way we have solved for c, the right-hand side of the above congruence is a

square. We then have a congruence of squares.

Example

Considering the factor base {2,3,5,7}, we will try to factor 84923.

513
2
 mod 84923 = 8400 = 2

4
*3*5

2
*7

517
2
 mod 84923 = 33600 = 2

6
*3*5

2
*7

so

(513.537)
2
 mod 84923 = 2

10
.3

2
.5

4
.7

2

513 times 537 is 20712 (mod 84923).

That is,

20712
2
 mod 84923 = (2

5
.3.55

2
.7)

2
 mod 84923 = 16800

2
 mod 84923

We then look at 20712-16800 = 3912 and 20712+16800 = 37512, and compute their greatest

common divisors with 84923 by using Euclid's algorithm. This is 163 in the case of 3912, and

521 in the case of 37512; and, indeed, 84923 = 521 * 163.

REFERENCES

1. http://en.wikipedia.org/wiki/Trial_division

2. Richard P. Brent. An Improved Monte Carlo Factorization Algorithm, BIT 20,

1980, pp.176-184

3. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001. ISBN 0-262-

PGDCS 00: Cryptography Uttarakhand Open University

 Page
67

03293-7. Section 31.9: Integer factorization, pp.896–901

4. http://en.wikipedia.org/wiki/Pollard%27s_p-1_algorithm

5. http://www.mersennewiki.org/index.php/P_Plus_1 MersenneWiki article about p+1

factorization method.

6. Lenstra Jr., H. W. "Factoring integers with elliptic curves." Annals of

Mathematics (2) 126 (1987), 649-673. MR 89g:11125.

7. Brent, Richard P. "Factorization of the tenth Fermat number." Mathematics of

Computation 68 (1999), 429-451.

8. http://en.wikipedia.org/wiki/Fermat%27s_factorization_method

9. J. D. Dixon, "Asymptotically fast factorization of integers," Math. Comput.,

36(1981), p. 255-260.

7.4 QUADRATIC-SIEVE FACTORING

The pseudo code for the MD5 algorithm is as follows:

// Note: All variables are unsigned 32 bits and wrap modulo 2^32 when calculating

var int [64] r, k

// r specifies the per-round shift amounts

// Use binary integer part of the sines of integers as constants:

for i from 0 to 63

 k[i] := floor(abs(sin(i + 1)) × (2 pow 32))

// Initialize variables:

h0 := 0x67452301

h1 := 0xEFCDAB89

h2 := 0x98BADCFE

h3 := 0x10325476

// Pre-processing:

append "1" bit to message

PGDCS 00: Cryptography Uttarakhand Open University

 Page
68

append "0" bits until message length in bits = 448 (mod 512)

append bit (bit, not byte) length of unpadded message as 64-bit little-endian integer to message

// Process the message in successive 512-bit chunks:

for each 512-bit chunk of message

break chunk into sixteen 32-bit little-endian words w[i], 0 = i = 15

// Initialize hash value for this chunk:

var int a := h0

var int b := h1

var int c := h2

var int d := h3

// Main loop:

for i from 0 to 63

 if 0 ≤ i ≤ 15 then

 f := (b and c) or ((not b) and d)

 g := i

 else if 16 ≤ i ≤ 31

 f := (d and b) or ((not d) and c)

 g := (5×i + 1) mod 16

else if 32 ≤ i ≤ 47

 f := b xor c xor d

 g := (3×i + 5) mod 16

else if 48 ≤ i ≤ 63

 f := c xor (b or (not d))

 g := (7×i) mod 16

temp := d

d := c

c := b

PGDCS 00: Cryptography Uttarakhand Open University

 Page
69

b := b + leftrotate ((a + f + k[i] + w[g]) , r[i])

a := temp

// Add this chunk's hash to result so far:

h0 := h0 + a

h1 := h1 + b

h2 := h2 + c

h3 := h3 + d

var int digest := h0 append h1 append h2 append h3

// (expressed as little-endian)

// leftrotate function definition

leftrotate (x, c)

return (x << c) or (x >> (32-c));

Summary

The MD5 message-digest algorithm is simple to implement, and provides a "fingerprint" or

message digest of a message of arbitrary length. It is conjectured that the difficulty of coming up

with two message having the same message digest is on the order of 2^64 operations, and that

the difficulty of coming up with any message having a given message digest is on the order of

2^128 operations. The MD5 algorithm has been carefully scrutinized for weaknesses. It is,

however, a relatively new algorithm and further security analysis is of course justified, as is the

case with any new proposal of this sort.

Differences Between MD4 and MD5

The following are the differences between MD4 and MD5

1. A fourth round has been added.

2. Each step now has a unique additive constant.

3. The function g in round 2 was changed from (XY v XZ v YZ) to(XZ v Y not(Z)) to make g

less symmetric.

4. Each step now adds in the result of the previous step. This

......a. promotes a faster "avalanche effect".

5. The order in which input words are accessed in rounds 2 and

PGDCS 00: Cryptography Uttarakhand Open University

 Page
70

......a. 3 is changed, to make these patterns less like each other.

6. The shift amounts in each round have been approximately

......a. optimized, to yield a faster "avalanche effect." The shifts in

......b.different rounds are distinct.

SHA hash functions

The SHA hash functions are five cryptographic hash functions designed by the National

Security Agency (NSA) and published by the NIST as a U.S. Federal Information Processing

Standard . SHA stands for Secure Hash Algorithm.

The five algorithms are denoted SHA-1 , SHA-224 , SHA-256 , SHA-384 , and SHA-512 . The

latter four variants are sometimes collectively referred to as SHA-2 . SHA-1 produces a message

digest that is 160 bits long; the number in the other four algorithms' names denote the bit length

of the digest they produce.

SHA-1 is employed in several widely used security applications and protocols, including TLS

and SSL , PGP , SSH , S/MIME , and IPsec . It was considered to be the successor to MD5 , an

earlier, widely-used hash function.

SHA-1 algorithm

Initialize variables:

h0 := 0x67452301

h1 := 0xEFCDAB89

h2 := 0x98BADCFE

h3 := 0x10325476

h4 := 0xC3D2E1F0

Pre-processing:

append the bit '1' to the message

append k bits '0', where k is the minimum number >= 0 such that the resulting message

................length (in bits) is congruent to 448 (mod 512)

append length of message (before pre-processing), in bits , as 64-bit big-endian integer

Process the message in successive 512-bit chunks:

break message into 512-bit chunks

PGDCS 00: Cryptography Uttarakhand Open University

 Page
71

for each chunk

............break chunk into sixteen 32-bit big-endian words w[i], 0 ≤ i ≤ 15

Extend the sixteen 32-bit words into eighty 32-bit words:

for i from 16 to 79

...........w[i] := (w[i-3] xor w[i-8] xor w[i-14] xor w[i-16]) leftrotate 1

Initialize hash value for this chunk:

a := h0

b := h1

c := h2

d := h3

e := h4

Main loop:

for i from 0 to 79

 if 0 ≤ i ≤ 19 then

 f := (b and c) or ((not b) and d)

 k := 0x5A827999

 else if 20 ≤ i ≤ 39

 f := b xor c xor d

 k := 0x6ED9EBA1

 else if 40 ≤ i ≤ 59

 f := (b and c) or (b and d) or (c and d)

 k := 0x8F1BBCDC

 else if 60 ≤ i ≤ 79

 f := b xor c xor d

 k := 0xCA62C1D6

temp := (a leftrotate 5) + f + e + k + w[i]

e := d

d := c

c := b leftrotate 30

PGDCS 00: Cryptography Uttarakhand Open University

 Page
72

b := a

a := temp

Add this chunk's hash to result so far:

h0 := h0 + a

h1 := h1 + b

h2 := h2 + c

h3 := h3 + d

h4 := h4 + e

Produce the final hash value (big-endian):

digest = hash = h0 append h1 append h2 append h3 append h4

Reference:

Hans Delfs and Helmut Knebl, Introduction to Cryptography: Principles and Applications, 2 nd

Edition, Springer Verlag.

1. Introduction to Cryptography with Coding Theory , W. Trappe and L. C. Washington,

Pearson Education .

2. Cryptography and Network Security , William Stallings, Prenctice Hall India .

3. Cryptography Theory and Practice , D. R. Stinson, CRC Press .

7.5 POLLARD-RHO METHOD

Fermat Factorization

This method of factorization a number n is based on the fact that every odd number can be

expressed as the difference of two squares.

Let

Notice that, if n is odd, then so is a and b and hence and are integers.

PGDCS 00: Cryptography Uttarakhand Open University

 Page
73

Therefore, where

Factorization technique

 One tries various values of t, hoping that is a square.

FermatFactor (n): // n is odd

 s

while s_sq isn't a square:

s

endwhile

return

Run time: let n = ab , then

Number of steps required:

If n is prime (so that a = 1), one needs O(n) steps! But if n has a factor close to its square-root the

method works quickly.

E.g. factorize 200819

PGDCS 00: Cryptography Uttarakhand Open University

 Page
74

Soln:

449
2
 - 200819 = 782 ≠ perfect square

450
2
 - 200819 = 41

2

⇒ 200819 = (450 + 41)(450 - 41) = 491* 409

Factor Bases

Let t
2
 = s

2
 = mod n Λ t ≠ ± s mod n then gcd (t + s,n) and gcd (t - s,n) gives nontrivial factors of

n.

Proof: t
2
 = s

2
 mod n ⇒ nI t

2
- s

2 ⇒ n I (t + s)(t -s)

But

⇒ gcd (t + s,n) and gcd (t - s,n) give nontrivial factors of n

Pollard’s rho heuristic

As the procedure is only a heuristic, neither its running time nor its success is guaranteed. Given

n it can factorize in time.

Pollard-Rho (n)

PGDCS 00: Cryptography Uttarakhand Open University

 Page
75

14. Endwhile

The following sequences may be noted from the procedure above:

Notice that as x1 was initialized with a value in Zn and all succeeding values in the sequence

depend on the previous value, the sequence is bound to repeat after some values. Moreover, the

dependence is a random function given by:

7.6 POLLARD RHO ANALYSIS

Pollard Rho Analysis:

By the birthday-paradox, the sequence then must repeat after steps in expectation. As

will be shown below, a similar sequence of for a prime factor of n will also repeat in

steps or steps in expectation because the greatest value of the smallest prime

factor of n is less than .

Let p be a nontrivial factor of n, then the sequence induces a corresponding sequence

modulo p where

PGDCS 00: Cryptography Uttarakhand Open University

 Page
76

Thus, although the sequence is not being computed explicitly, it is well defined and obeys

the same recurrence as the sequence . By similar reasoning as for the original sequence, the

sequence repeats in . Consider the figure below for the illustration.

Let t denote the index of the first repeated value in the sequence, and let u > 0 denote the

length of the cycle that has been produced.

i.e. t and u > 0 are the smallest values such that for all i ≥ 0. Clearly the length

t of the tail of the ‗Rho' and the length u of the cycle take the value in expectation.

PGDCS 00: Cryptography Uttarakhand Open University

 Page
77

When Pollard-Rho saves as y any value xk such that k ≥ t then y mod p will always remain on

the cycle modulo p because future values will always be ones already on the cycle. Then, to

ensure that line 8 of Pollard-Rho computes a nontrivial factor, all that is required is that

. This happens when k is set to a value greater than u which causes xi to loop

around all values in the cycle modulo p without a change in y. A factor of n is then discovered

when xi ‗runs into' the previously stored value of y modulo p.

Since the expected values of both t and u are , the expected number of steps to produce

the factor p is . For the smallest factor of n, p is less than and hence the overall run

time is in expectation.

Two reasons why the algorithm may not perform as expected:

• The heuristic analysis of the run time may result in the the cycle of values modulo p to be

much larger than , in which case the algorithm performs correctly but slower than desired.

• The divisors of n produced may not always be a trivial one like 1 or n.

Both these problem are found to be insignificant in practice.

Reference:

1. Introduction to Algorithms , Second Edition, T. H. Cormen, C. E. Leiserson, R. Rivest and C.

Stein, Prentice Hall India .

2. A course in Number Theory and Cryptography, Neal Koblitz , Springer.

PGDCS 00: Cryptography Uttarakhand Open University

 Page
78

UNIT VIII: PRIMALITY TESTING

8.1 PRIMALITY TESTING

Primality Testing

Mathematicians have tried in vain to this day to discover some order in the sequence of prime

numbers, and we have reason to believe that it is a mystery into which the human mind will

never penetrate. L. EULER.

Abstract: Our objective is to find a polynomial-time foolproof algorithm to determine whether

a given integer is prime. Everyone knows trial division, in which we try to divide n by every

integer m in the range .The number of steps in this algorithm will be at least the

number of integers m we consider, which is something like in the worst case (when n is

prime). Note that is roughly where d is the number of digits of n when written in binary

(and d is roughly log{n} where, here and throughout, we will take logarithms in base 2). We

first present few basic algorithms for primality testing and then proceed with AKS algorithm[2].

Introduction:

There are few better known or more easily understood problems in pure mathematics than the

question of rapidly determining whether a given integer is prime. The problem of distinguishing

prime numbers from composite numbers, and of resolving the latter into their prime factors is

known to be one of the most important and useful in arithmetic. It has engaged the industry and

wisdom of ancient and modern geometers to such an extent that it would be superfluous to

discuss the problem at length. Nevertheless we must confess that all methods that have been

proposed thus far are either restricted to very special cases or are so laborious and difficult that

even for numbers that do not exceed the limits of tables constructed by estimable men, they try

the patience of even the practiced calculator. And these methods do not apply at all to larger

numbers.

Primes come up in many different places in the mathematical literature, and some of these

suggest ways to distinguish primes from composites. Those of us who are interested in primality

testing always look at anything new with one eye open to this application, and yet finding a fast

primality testing algorithm has remained remarkably elusive. See [4] and [5] for probabilistic and

randomized primality testing methods. The advent of the AKS algorithm makes us wonder

PGDCS 00: Cryptography Uttarakhand Open University

 Page
79

whether we have missed some such algorithm, something that one could perform in a few

minutes, by hand, on any enormous number.

The ultimate goal of this line of research has been, of course, to obtain an unconditional

deterministic polynomial-time algorithm for primality testing. This is achieved by the AKS

algorithm. Next we give the mathematical background to understand the algorithms for Primality

testing.

Introduction to Jacobi Symbol:

 Suppose we want to determine whether or not x
2
≡ a (mod p) has a solution, where p is

prime, If p is small, we could square all of the numbers mod p and see if a is on the list. When p

is large, this is impractical. If p≡3 mod 4 we can find out the by using a technique in which we

compute s≡ a
(p+1)/4

 (mod p). If a has a square root, then s is one of them, so we simply have to

square s and see if we get a. If not, then a has no square root mod p. The following proposition

gives a method for deciding whether a is a square mod p that works for arbitrary odd p.

Proposition: let p be a odd prime and let a be an integer with a ≢ 0 (mod p). Then a
(p-1)/2

≡ ± 1

(mod p). The congruence x
2
≡ a (mod p) has a solution if and only if a

(p-1)/2
≡1 (mod p).

Proof: Let y ≡ a
(p-1)/2

 (mod p). Then y
2
≡ a

p-1
 ≡ 1 (mod p), by Fermat‘s theorem. Therefore, y

≡±1 (mod p).

 If a≡x
2
, then a

(p-1)/2
 ≡ x

p-1
 ≡ 1 (mod p). The hard part is showing the converse. Let g be a

primitive root mod p. Then a ≡ g
j
 for some j. If a

(p-1)/2
 ≡1 (mod p), then

 g
j(p-1)/2

 ≡ a
(p-1)/2

 ≡ 1 (mod p).

Which implies j.(p-1)/2 ≡0 (mod p-1). This implies that j must be even: j=2k. Therefore, a ≡ g
j

≡ g
(k)2

 (mod p), so a is a square mod p.

Although the above proposition is easy to implement by a computer , it is rather difficult to use

by hand. In the following we introduce the Legendre and Jacobi symbols, which gave us an easy

way to determine whether or not a number is a square mod p. they are also very useful in

Primality testing.

Let p be an odd prime and let a (not) ≡0 (mod p). Define the Legendre symbol

)
= { 1 if x

2
≡ a (mod p) has a solution.

PGDCS 00: Cryptography Uttarakhand Open University

 Page
80

- 1 if x
2
≡ a (mod p) has a solution.

Some important properties of the Legendre symbol are given in the following.

Properties: Let p be an odd prime.

The properties above can be used to build a recursive algorithm to compute the Jacobi symbol

efficiently. In fact, the algorithm is strongly reminiscent of Euclid‘s algorithm for the gcd. Here

is how the algorithm applies to compute :

 If m > n then use the invariance property: return .

 If m=0 or m=1, then use(7) : return 0 or 1

 Factor m as 2
k
l, where l is odd. If k >0 use formulas (7) and (3) : return

 .

 Use reciprocity : if m=n=3 mod 4 then return - ; otherwise return .

As this method is similar to Euclidean GCD algorithm, its complexity too is O ().

PGDCS 00: Cryptography Uttarakhand Open University

 Page
81

The Jacobi symbol extends the Legendre symbol from primes p to composite odd integers n. One

might define the symbol to be +1 if a is a square mod n and -1 if not. However, this would cause

the property (3) to fail.

 In order to preserve property (3), we define the Jacobi symbol as follows. Let n be an odd

positive integer and let a be a nonzero integer with gcd (a, n) =1. Let

 n = p1
a
p2

b
p3

c
……pr

q

be prime factorization of n. Then

The symbols on the right side are Legendre symbols introduced earlier. Note that if n=p, the right

side is simply one Legendre symbol, so the Jacobi symbol reduces to the Legendre symbol.

Properties:

PGDCS 00: Cryptography Uttarakhand Open University

 Page
82

Before going into any of the primality tests we give a basic principle on which the tests depend

upon.

Basic principle: let n be an integer and suppose there exist integers x and y with x2≡y2 (mod n),

but x ≢ ±y (mod n). Then n is composite. Morover, gcd(x-y,n) gives a nontrivial factor of n.

Proof: Let d = gcd(x-y, n). if d= n then x ≡ y (mod n), which is assumed not to happen.

Suppose d=1. A basic result on divisibility is that if a| bc and gcd(a,b) =1, then a |c.In our case,

since n divides x2– y2 = (x-y) (x+y) and d=1, we must have that n divides x+y, which

contradicts the assumption that x ≢ -y (mod n). Therefore d ≠ 1, n so d is nontrivial factor of n.

8.2 FERMAT PRIMALITY TEST

Fermat Primality Test: Let n >1 be an integer. Choose a random integer a with 1 < a < n-1.

If a
 n-1≢ 1(mod n) then n is composite. If a

n-1
 ≡ 1 (mod n), then n is probably prime.

 If we are careful about how we do this successive squaring, the Fermat test can be combined

with the basic principle to yield the following stronger result.

Miller- Rabin Primality test:

Let n >1 be an odd integer. Write a-1 =2
k
m with m odd. Choose a random integer a with 1< a<

n-1. Compute b0 ≡ a
m
 (mod n). If b0 ≡ ±1 (mod n), then stop and declare that n is probably

prime. Otherwise, let b1 ≡ b0
2
 (mod n). If b1 ≡ 1 (mod n), then n is composite (and gcd (b0 -1,n)

gives a nontrivial factor of n). If b1 ≡ -1 (mod n), then stop and declare that n is probably prime.

Otherwise, let b2 ≡ b1
2
 (mod n). If b2 ≡ 1 (mod n), then n is composite. If b2 ≡ -1 (mod n), then

stop and declare that n is probably prime. Continue in this way until stopping and reaching bk-1.

If bk-1≢ -1 (mod n), then n is composite.

The reason why the test works is- suppose, for example that b3≡1 (mod n). This means that

b2
2
≡1 (mod n). This means that b2

2
≡1

2
 (mod n). Apply the basic principle from before. Either

b2≡±1 (mod n), or b2≢ ±1 (mod n) and n is composite. In the latter case, gcd (b2-1, n) give a

nontrivial factor of n. In the former case, the algorithm would have stopped by the previous step.

MILLER-RABIN (n, s)

1. For j← 1 to s

2. do a ← RANDOM(1,n-1)

3. If WITNESS (a,n)

PGDCS 00: Cryptography Uttarakhand Open University

 Page
83

4. then return COMPOSITE

5. return PRIME

WITNESS (a, n)

 Let <bk,bk-1…b0 > be the binary representation of n-1.

 d←1

 for I ← k down to 0

 do x ← d

 d←(d. d) mod n

 if d=1 and x≠1 and x≠n-1

 then return TRUE

 if(bi=1) then

 d← (d. a) mod n

 end for

 if d≠1

 then return TRUE

 return FALSE

If we reach bk-1 , we computed bk-1≡a
 (n-1)/2

 (mod n). The square of this is a
n-1

, which must be 1

(mod n) if n is prime, by Fermat‘s Theorem. Therefore, if n is prime, bk-1≡ ± 1 (mod n). All other

choices mean that n is composite. Moreover, if bk-1 ≡1 then, if we didn‘t stop at an earlier step,

bk-2
2
≡1

2
 (mod n) with bk-2 ≢ ±1 (mod n). This means that n is composite (and we can factor n).

Although all prime numbers will be detected through this test, however the converse is not true.

There are numbers which pass this test but are composite, i.e n is composite and a
n-1

 ≡ 1 (mod

n)for all possible bases a. Such numbers are called Carmichael numbers. For example 561 is a

Carmichael number. Carmichael numbers are usually of the form (p1.p2.p3) where the number is

product of primes.

An alternative and equivalent definition of Carmichael numbers is given by Korselt's criterion.

Theorem : A positive composite integer n is a Carmichael number if and only if n is square-free,

and for all prime divisors p of n, it is true that p − 1 | n − 1 .

For example:

PGDCS 00: Cryptography Uttarakhand Open University

 Page
84

561= 3.11.17 is square-free and 2 |560, 10|560, 16 |560.

1105= 5.13.17 is square-free and 4 |1104, 12|1104, 16 |1104.

Solovay-Strassen Primality test: let n be an odd integer. Choose several random integers a

with 1<a<n-1.if

For some a, then n is composite. If

For all a, then n is probably prime.

Running time: O((log n)
3
). This follows from running times of separate parts of the algorithm:

finding gcd, computing of Jacobi symbol, and finally computing powers of a.

Respectively, O((log n)
2
) + O((log n)

2
) + O((log n)

3
).

Definition 1. For odd n > 3, we define

We will use the following lemma.

Lemma 2.1. For odd n > 3, n is prime if and only if E(n) = Zn
*

For the proof of the lemma, refer to the book Randomized Algorithms [1], Lemma 14.30.

Theorem 2.2. If n is an odd prime, and a ∈ {1, . . . , n − 1}, the probability that the

algorithm returns “prime” is [Solovay − Strassen(n) = ―prime‖] = 1.

If n is an odd composite, the probability that algorithm returns ”composite” is

 [Solovay − Strassen(n) = ―composite‖] ≥1/2

Proof: If n is an odd prime, then the algorithm will obviously always output ‖prime‖. Let us

now prove the second part of the theorem. Assume that n is an odd composite. We will show

that the probability of the algorithm returning ‖prime‖ is ≤ 1/2

 [Solovay − Strassen(n) = ―prime‖] =

 [{gcd(a, n) = 1} ∈ {= a
(n−1)/2

mod n}] =

From Lemma 2.1 it follows that E(n) ≠ Zn
*

Now it is easy to show that E(n) is a subgroup of the multiplicative group Zn
*

PGDCS 00: Cryptography Uttarakhand Open University

 Page
85

a, b ∈ E(n) ∈ (ab mod n) ∈ E(n)

a ∈ E(n) ⇒ a
−1 ∈ E(n).

E(n) is thus a proper subgroup of Zn
*

and, from elementary group theory, we conclude that

Thus [Solovay − Strassen(n) = ―prime‖] ≤ ½

8.3 AKS PRIMALITY TEST

AKS PRIMALITY TEST:

First we describe a characterization of prime numbers that will provide the conceptual

mathematical foundation for our polynomial time algorithm.

Lemma 3.1: Let a∈ Z, n ∈ N, such that (a, n) = 1. Then n is prime iff (x+a)
n
 ≡ x

n
 +a (mod n).

Proof:

By the Binomial theorem we have:

If n is prime then is divisible by n according to the binomial theorem. By Fermat's little

theorem, we have a
n
 ≡ a (mod n) and hence the equivalence in the above equation holds.

If n is composite, then let q be a prime divisor of n with q
s
 | n . The coefficient of x

n-q
 in the

binomial expansion of (x + a)
n
 is a

q
 . The numerator is divisible by q

s
 but not by

q
s+1

. The denominator is divisible by q. Hence a
q
≠ 0(mod n). Since (a,n) = 1,

implies (a,q
s
) = 1, implies (a

q
, q

s
) = 1, implies a

q
 ≠ 0(mod n).

Therefore (x+a)
n
 ≠ x

n
 + a (mod n)

The above identity suggests a simple method for testing the primality of an integer n. We can

choose an integer a such that (a, n) = 1 and calculate f(x) = (x + a)
n
 - (x

n
 + a). If this function is

equal to 0 (mod n) then n is prime, else n is composite. Although this is certainly a valid

PGDCS 00: Cryptography Uttarakhand Open University

 Page
86

primality test, it is horribly inefficient as it involves the computation of n coefficients. The trick

however is in choosing a suitable integer a. The simplest method for reducing the number of

coefficients that need to be computed is to evaluate f(x) modulo n and modulo some polynomial

of small degree, say (x
r
 - 1).

Although it is clear that all primes p satisfy (x + a)
p
 - (x

p
 + a) ≡ 0 mod (p, x

r
 -1), some composite

numbers may satisfy this equation for all values of a and r. It turns out that for a judiciously

chosen r, if the above identity is satisfied for several values of a, then n can be shown to be a

prime power. The number of a's and the appropriate value of r are bounded by log(n). Therefore

we have just described a deterministic polynomial time primality testing algorithm.

Algorithm:

INPUT: n ≥ 1

STEP 1: If ∃ a, b > 1∈ N such that n= a
b
, then output COMPOSITE.

STEP2: Find the minimal r ∈ N such that or(n) > log
2
 (n)

STEP3 : For a=1to r do

 If 1< (a,n) < n, then output COMPOSITE

STEP4: if r ≥ n, then output PRIME

STEP5: For a=1 to do

If (x+a)
n
 – (x

n
 +a) ≠ 0 mod (n, x

r
 -1), then output COMPOSITE.

STEP 6: output PRIME.

Proof: If n is prime, STEP 1 cannot return COMPOSITE. Similarly, STEP 3 cannot return

COMPOSITE. Hence, the AKS algorithm will always return PRIME if n is prime.

Conversely, if the AKS algorithm returns PRIME, we will prove that n is indeed prime. If the

algorithm returns PRIME in STEP 4, n must be prime because otherwise a non trivial factor a

would have been found in STEP 3. The only case which remains is that if the algorithm returns

PRIME in STEP 6.

Lemma: There exists an integer r ∈ N with the following properties:

PGDCS 00: Cryptography Uttarakhand Open University

 Page
87

Proof:

For n=2, r=3 satisfies all the conditions.

For

 We know that for n ≥ 7, lcm(n) ≥ 2
n
 where lcm(m) denote the LCM of first m numbers.

So we get the following:

Let r be the smallest integer not dividing N. then condition (2) is obviously satisfies as r is not

divisor

(n
i
-1) for . Condition (1) is also satisfies because

Now we prove (3). It is clear that (r,n) <r,as otherwise r would divide n and hence N. Thus

 is an integer less than max not dividing N. Because r was chosen to be

minimal,it must be case that .hence we have found the r.

Because Or(n) >1, n must have some prime divisor p such that Or (p) >1. STEP 3 did not output

COMPOSITE, so we know that (n, r)=(p, r) =1. Additionally, we know that p > r as otherwise

STEP 3 or STEP 4 would have returned a decision regarding the primality n.

Hypothesis:

We now focus our attention on STEP 5 of the algorithm. Let us define an introspective. For

polynomial f(X) and number m ∈ N, we say that m is introspective for f(X) if

 f(X)
m

 = f(X
m

) (mod X
r
-1, p).

PGDCS 00: Cryptography Uttarakhand Open University

 Page
88

Lemma: let n ∈ N have prime divisor p and let a ∈ N with 0 ≤ a ≤ l.if n,p are introspective for

(x+a), then is introspective for (x+a) as well.

Proof: As p and n are both introspective for (x+a), we have

We must show h ≡ 0(mod x
r
−1).Because (r,p) =1, x

r
−1 factors into distinct irreducible hi(x) over

Zp. Using the Chinese Remainder theorem , we get

As x
r
−1 divides h

p
, each of the irreducible factors hi(x) divide h. Hence x

r
−1 divides h. Hence the

proof.

It is easy to see the introspective numbers are closed under multiplication and that the set of

functions for which a given integer is introspective is closed under multiplication.

We can now state a fact as a consequence of the above results.

Every element if the set is introspective for every polynomial in the

set . We now define two groups based on these sets that will play a

crucial role in the proof.

1. This is a subgroup of Z
*

r since (n,r) =(p,r)=1. Let G be this group

and |G|=t.G is generated by n and p modulo r and since Or(n) > log
2
 (n), t > log

2
 (n).

2. Let Qr(X) be r
th

 cyclotomic polynomial over Fp .

Polynomial Qr(X) divides X
r
−1 and factors into irreducible factors of degree or(p) . Let

h(X) be one such irreducible factor. Since or(p) >1, the degree of h(X) is greater than

one. The second group is the set of all residues of polynomials in P modulo h(X) and p.

Let G be this group. This group is generated by elements X, X+1,X+2,…, X+l in the

field F = FpX/ (h(X)) and is a subgroup of the multiplicative group of F.

PGDCS 00: Cryptography Uttarakhand Open University

 Page
89

Lemma :

Proof: Note that because h(x) is a factor of Qr(X) , x is a primitive r
th

 root of unity in F. We now

show that if f, g ∈ P are distinct polynomials with degrees less than t, then they map to distinct

elements in G.

 Suppose, that f(x) =g(x) in F. Let m ∈ I. Then m is introspective for f and g, so f(x
m

)=g(x
m

)

within F. Then x
m

 is a root of j(z)=f(z)-g(z) for every m ∈ Ir. We know,(m,r)=1, so each such x
m

is a primitive r
th

 root of unity. Hence there are distinct roots of j(z) in F. But the degree

j(z) < t by the choice of f and g. This contradiction (a polynomial cannot have more roots ina

field than its degree) implies that f(x)≠ g(x) in F.

Notice that i≠ j in Fp whenever 1≤ i, j≤ l since Then by

above ,x,x+1,x+2,x+3...x+l are a. Since the degree of h(x) is greater than 1, all of these linear

polynomials are nonzero in F. therefore there are atleast, l+1 distinct polynomials of degree 1 in

G. hence there atleast polynomials of degree s in G. Then the order of G is atleast .

hence the proof.

Lemma : If n is not a power of p then .

Proof: Consider the following subset of I:

If n is not a power of p, then Since there are at least two

elements of I‘ that are equivalent modulo r. Label these elements m1,m2 where m1>m2 .

Then

Let f(x)∈P Then because m1,m2 are introspective

Thus in the field F. Therefore the polynomial has

atleast |G| roots in F (since f(x) ∈ P was arbitrary). Then because is the

largest element of I‘.

PGDCS 00: Cryptography Uttarakhand Open University

 Page
90

It follows that . Hence the proof.

Lemma: If AKS algorithm return PRIME then n is prime.

Proof: Assume that the algorithm return prime. Recall that and is generated by n and p,

therefore t≥ Or(n) > log
2
 (n) or .

We know that

Also by lemma, if p is not a power of p. Therefore it must be the case that n= p
k
 for

some k>0 . But STEP 1 did not output COMPOSIT, so k=1, proving that n is indeed prime. This

completes our proof of theorem .

Time Complexity:

 The overall complexity of AKS algorithm is O (log
10.5

(n)).

Conclusion: In this report we have presented the three important Primality testing algorithms,

Miller- Rabin Test, Solovay –Strassen test, AKS algorithm. We also gave an introduction to the

Jacobi symbol. The AKS algorithm is an unconditional deterministic polynomial time algorithm

for Primality testing. It was first of its kind. The algorithm was a major breakthrough for

Primality testing and in general for mathematics. The authors received many accolades,

including the 2006 Godel prize and the 2006 Fulkerson Prize, for this work.

PGDCS 00: Cryptography Uttarakhand Open University

 Page
91

References:

1. R. Motwani and P. Raghavan, Randomized algorithms. Cambridge University Press,1995.

2. M. Agarwal, N.Kayal and N.saxena , primes in P,Department of Computer Science

Engineering, Indian Institute of technology Kanpur. Available from the World wide web http://

www.cse.iitk.ac.in/news/primality.pdf

3. Trappen and Washington, Introduction to Cryptography with Coding Theory.

4. G.L. Miller riemanns hypothesis and tests for Primality.

5. M.O. Rabin . Probabilistic algorithm for testing primality.

Acknowledgement: Mr. Sai Sheshank Burra (B. Tech, CSE) [Scribe for Last Three

Lectures]

PGDCS 00: Cryptography Uttarakhand Open University

 Page
92

UNIT IX: ELLIPTIC CURVE CRYPTOSYSTEM

9.1 ELLIPTIC CURVES

An elliptic curve is defined by an equation in two variables, with coefficients. For cryptography,

the variables and coefficients are restricted to elements in a finite field.

Note : Elliptic curves are not ellipses. They are so named because they are described by cubic

equations, similar to those used for calculating the circumference of an ellipse.

Definition : Let be a field of characteristic and let (where) be a cubic

polynomial with no multiple roots. An elliptic curve over is the set of points with

which satisfy the equation

(1)

together with a single element and called the ―point at infinity‖.

If is a field of characteristic 2, then an elliptic curve over is the set of points satisfying an

equation of type either

(2)

or else,

(3)

If is a field of characteristic 3, then an elliptic curve over is the set of points satisfying the

equation

(4)

Figure 1 shows two examples of elliptic curves. Now, consider the set of points E

consisting of all of the points that satisfy Equation (1) together with the element . Using a

different value of the pair results in a different set E .

Using this terminology, the two curves in Figure 1 depict the sets and ,

respectively.

PGDCS 00: Cryptography Uttarakhand Open University

 Page
93

Figure 1 Examples of Elliptic Curves

Geometric Description of Addition :

A group can be defined based on the set E for specific values of and in Equation (1),

provided the following condition is met:

PGDCS 00: Cryptography Uttarakhand Open University

 Page
94

(5)

To define a group, we define an operation, called addition and denoted by +, for the set E ,

where and satisfy Equation (5). In geometric terms, the rules for addition can be stated as

follows: If three points on an elliptic curve lie on a straight line, their sum is .

From this definition, we can define the rules of addition over an elliptic curve:

Let , and denote the coordinates of , , and respectively. We want to

express and in terms of , , , .

Let be the equation of the line passing through and .

=

The equation of the elliptic curve is

=

Roots of the equation are , , .

PGDCS 00: Cryptography Uttarakhand Open University

 Page
95

Addition of two points:

9.2 ELLIPTIC CURVES (CONTD.) AND FINITE FIELDS

......

PGDCS 00: Cryptography Uttarakhand Open University

 Page
96

is the point of intersection of the tangent at and the elliptic curve.

Example : On the elliptic curve let and . Find and .

Solution .

....

For finding ,

For finding ,

PGDCS 00: Cryptography Uttarakhand Open University

 Page
97

Elliptic curves over :

For elliptic curves over , we have

(6)

Now consider the set consisting of all pairs of integers that satisfy Equation (6),

together with a point at infinity . The coefficients and and the variables and are all

elements of .

It can be shown that a finite abelian group can be defined based on the set provided that

has no repeated factors. This is equivalent to the condition

(7)

For example, let , that is, the elliptic curve

: . For the set , we are only interested in the nonnegative

integers in the quadrant from through that satisfy the equation mod . Table 1

lists the points (other than) that are part of . Figure 2 plots the points of .

In case of the finite group , the number of points is bounded by

Table 1 Points on the Elliptic curve other than

PGDCS 00: Cryptography Uttarakhand Open University

 Page
98

Figure 2 The Elliptic Curve

9.3 ECDL P

The Elliptic Curve cryptosystem (ECC) have the potential to provide relatively small block

size, high security public key schemes that can be efficiently implemented. The Elliptic Curve

Discrete Logarithm problem (ECDL P) is based on the fact that given m.P for some integer m

and some point P on the Elliptic Curve where P is known, we have to find v alue of m . The

smaller key size of Elliptic Curve Cryptosystem makes possible much more compact

implementations for a given level of security , which means faster cryptographic operations,

running on smaller chips or more compact software. We mainly concentrate on the Elliptic

Curve whose equation is given by y
2
= x

3
+ Ax + B defined over a finite field Fpfor prime p for A ,

B in the field. The ECC transforms data into some point representation of the Elliptic Curve. It

relies on calculating the multiple of a point P as m.P which is public and it is difficult to find

integer m from P and m.P . This is the Elliptic Curve Discrete Logarithm Problem (ECDL P). It

basically defines a group by the operator addition on the points found on the Elliptic Curve.

PGDCS 00: Cryptography Uttarakhand Open University

 Page
99

Informally a zero-knowledge proof system allows one person to convince another person of

some fact without revealing any information about the proof. There are usually two participants,

the prover and the verifier. The prover would like to prevent the verifier from gaining any useful

information while participating in the protocol. For some details refer [3] and [8].

An Elliptic Curve is defined on a field. The field may be finite or infinite. We will draw our

attention towards finite fields. It is denoted by Fqhaving q elements where q = p
r
having p as the

characteristic of the field Fqand r as any positive integer. We will mainly consider for the curve

where q = p i.e. r = 1. The points on the curve whose x and y values are in the field are taken into

account. The ECC transforms the data into some point representation. The points form an

Abelian Group w.r.t. the operator addition. There is one point indicated by O called the identity

element.

Definition 2.1. The Order of a point is defined as the number of times the point must be added in

order to give the identity element i.e. the point O .

Definition 2.2. The Generator of the group is a point whose Order is equal to the number of

points that are in the group.

The basis of ECC is The Elliptic Curve Discrete Logarithm Problem i.e. the ECDL P .

Definition 2.3. The Elliptic Curve Discrete Logarithm problem or ECDLP is defined as follows:

Given points P and Q on Ep(A, B) such that the equation m.P = Q holds. Compute k

given P and Q .

Definition 2.4. The Zero Knowledge Proof is defined as follows:

There are usually two participants, the prover and the verifier. The prover knows some fact and

wishes to prove that to the verifier. The prover and the verifier will be allowed to perform

alternatively the following computations:

1. Receive message from the other party .

2. Perform a private computation.

3. Send a message to the other party .

A typical round of the protocol will consist of a challenge by the verifier and a response by the

prover. At the end the verifier either accepts or rejects.

Definition 2.5. The Birthday Paradox is defined as follows :

How many people must there be in a room before there is a 50% chance that two of them were

born on the same day of the year.

PGDCS 00: Cryptography Uttarakhand Open University

 Page
100

The above problem can be stated in a different way as follows :

Given a random variable that is an integer with uniform distributions between 1 and n and a

selection of k instances (k = n) of the random variable, what is the probability p(n, k) that there

is at least one duplicate ? The Birthday Paradox is a special case where n = 365 and asks for the

value of k such that p(n, k)> 0 . 5. The answer to this problem is

k ≈O(√n). [6]

Definition 2.6. The M odular Linear Equation is stated as ax = b (mod n) where a > 0 and n >

0.

Review of Existing Results

Let E be an Elliptic Curve defined over a finite field with F p having equation y
2
 = x

3
+ Ax + B ,

where A & B satisfies the inequality 4 A
3
 + 27 B

2
 = 0. We can find the number of points on the

curve by checking the Legendre Symbol for y
2
 for each value of x . T he number of points will be

denoted by #E(Fp).

The Hasses's theorem provides some limit on the number of points on an Elliptic Curve defined

over a finite field. It states that |p +1-#E (Fp) |≤2√p . [5]

Theorem 3.1. The Equation ax ≡b (mod n) is solvable for the unknown x if and only if

gcd(a, n)|b . [4]

Theorem 3.2. The Equation ax ≡ b (mod n) either has d distinct solutions modulo n, where d =

gcd (a, n) ,or it has no solutions. [4]

Theorem 3.3. Let d = gcd (a, n) , and suppose that d = ax
f
+ ny

f
for some int e gers x

f
and y

f
. If d|

b, then the e quation ax ≡b (mod n) has as one of it's solutions the value x0, where x0 = x
f
(b/d)

mod n. [4]

Theorem 3.4. Sup p ose that the e quation ax ≡b (mod n) is solvable (that is, d|b , where d =

gcd (a,n)) and that x0is any solution to this e quation. Then, this e quation has exactly d distinct

solutions, modulo n, given by xi= x0+ i(n/d) for i = 0 , 1 , 2 , 3 ,, d - 1 . [4]

Corollary 3.5. For any n > 1, if gcd (a, n) = 1, then the equation ax ≡b(mod n) has a unique

solution, modulo n . [4] In particular if b = 1 then x = a
-1

n∈Z
*
.

Theorem 3.6. In a coin toss, if the probability of obtaining a head is p then it is expected that

after 1 /p tosses the first head is obtained. [2]

Theorem 3.7. ∀n>1,φ(n)/n= Ω(log log n/ log n) . [2]

PGDCS 00: Cryptography Uttarakhand Open University

 Page
101

First we will provide a Zero Knowledge Proof for Elliptic Curve Discrete Logarithm Problem

(ECDL P) and explain the properties. In the next section we will present an attack over the Zero

Knowledge Protocol.

Properties of Zero Knowledge Interactive Proof

A Zero Knowledge Interactive Proof (ZKIP) or Zero Knowledge Protocol is an iteracti ve

method for one party to prove to another that a (usually mathematical) statement is true without

revealing anything other than the veracity of the statement. A Zero Knowledge Interactive Proof

must satisfy three properties :

1. Completeness : If the statement is true, the honest verifier (that is, one following the protocol

property) will be convinced of this fact by an honest prover.

2. Soundness : If the statement is false, no cheating prover can convince the honest verifier that it

is true except with small probability .

3. Zero-Knowledge : If the statement is true, no cheating verifier learns anything other than this

fact.

9.4 ZERO KNOWLEDGE PROOF

Now we will give the Zero Knowledge Proof for Elliptic Curve Discrete Logarithm Prob-

lem(ECDLP) and prove the properties.Our proof has some resemblance with ElGamal signature

scheme [1] descri bed in [5] in details . Let the prover be Alice and the verifier be Bob . Let the

Elliptic Curve be denoted by Ep(A,B) and let n be the number of points on the Elliptic Curve. Let

P ∈ Ep(A,B) be a generator of the group. So Alice wants to convince Bob that she knows the

value of m where Q = mP without disclosing m . It can be achieved by following steps :

1. Alice picks random integer k with 1 = k = p-1 where p is the characteristic of the field and

sends R = kPto Bob.

2. Bob picks random integer r with 1 = r = p-1 and sends it to Alice.

3. Alice computes Y = (k-mr) mod n where n is the number of points on the curve i.e. # E(Fp) =

n , and sends it to Alice.

4. Bob verifies if R == YP + rQ .

If step 4 is satisfied then Bob accepts else rejects. Now we will verify the three properties stated

previously for the protocol as follows :

PGDCS 00: Cryptography Uttarakhand Open University

 Page
102

1. Completeness : Given Q = mP . We have to show that if Alice knows value of m , then Bob is

convinced that Alice knows it.

Since Alice knows value of m , all four steps in the protocol can be carried out. At step 3 Alice

computes Y = (k - mr) mod n and sends it to Bob. At step 4, Bob verifies YP + rQ = R or not.Now

YP + rQ = (k - mr) P + rQ = kP - rmP + rQ = kP - rQ + rQ = kP =R

(verified).

So Bob is convinced that Alice knowsm .

2. Soundness : Here we have to show that if Alice does not know value of m then she can't

convince Bob that she knows it or succeeds with a very small probability .

Now suppose Alice doesn't know value of m and wants to convince Bob that she knows it. The

only way that Alice can convince Bob is in step 3 of the protocol Alice should send such a value

for Y such that Y P should have value R- rQ , so that after

adding rQ Bob will get R .

i.e. YP = R-rQ

i.e. YP = kP - rmP

i.e. YP = (k - mr)P

i.e. Y= (k -mr) mod n

Now Alice has values of k , r but she doesn't have the value of m . So it can't find value of k-mr .

So she can't cheat.

3. Zero-Knowledge : Here we have to show that no information is released in the pro-tocol.

Now in one session of the protocol Bob/Eavesdropper E has the following information:

P ,Q , R = kP ,r ,Y = (k - mr) mod n .

Now from Y = (k - mr) mod n , in order to find out value of m it knows value of r . So the only

thing left is to know k . But to find k the only way is to solve the ECDLP , R = kP for k . So

Bob/Eavesdropper can't know value of m . So the proof is a Perfect Zero-Knowledge .

Attack on the Zero Knowledge Protocol

During the whole protocol the Eavesdropper E has the following information :

point P (known)

point Q = mP (known)

point R = k P (known) (k unknown)

number r (known)

PGDCS 00: Cryptography Uttarakhand Open University

 Page
103

number Y = (k - mr) mod n (known, m unknown)

From it the Eavsdropper can't find any useful information. But the attack is possible

if the attacker uses information from multiple sessions of the challenge-response protocol. Now

suppose in one session

Y 1= (k - mr 1) modn (1)

In another session Alice use the same k to compute R and thus

Y 2 = (k - mr2) modn (2)

So (1) - (2) ? Y 1-Y 2 = m(r2 - r 1) mod n

⇒ m (r2 - r 1) = (Y 1- Y2) mod n (3)

So r2- r 1 is known, and Y1- Y2 is known. So we can solve form by using Theorem 3.4. Here in the

Modular Linear Equation ax ≡b mod n , a = (r2- r1), b = (Y1- Y2), x = m and the number of

solutions = gcd(a,n). The attack proceeds as follows :

In step 1 of the protocol Eavesdropper E gets the value of Ri= kiP(i = 1 , 2 , 3 ,) where i

denotes the session numbers of the challenge-response protocol. Suppose at some session j , E

disc overs Rj= Rl, for some l < j . Thus we have :

kjP = klP ⇒ (kj-kl)P = O. We will assume P is either the generator or a point on the Elliptic Curve

with high order. Otherwise ECDLP can be easily solved by any brute force method. Thus we can

safely assume without loss of generality O(P) >> kj- kl. Thus the only way the equality holds if

kj= kl. Thus the entire problem reduces to solving the Modular Linear Equation (3). From

Corollary 3 . 1 of Modular Linear Equation we hence

m = (Y1-Y2)(r2- r1) - 1 mod n .

As stated in Corollary3.1,(r2- r1)-1 would be uniquely defined if gcd (r2- r1,n) = 1.

LetΔ= r2- r1. Thus gcd(Δ ,n) = 1. W e can adopt the following randomized algorithm

to compute Δ and thus r2 from r1 .

Algorithm 1 RAND (n)

 1: Pick a random number x from (2 , 3 ,, n - 1).

2: Compute gcd(x,n).

3: if gcd (x,n) = 1 then

4: Set Δ←x .

PGDCS 00: Cryptography Uttarakhand Open University

 Page
104

5: else

6: goto step 1.

7: end if

8: Return Δ.

We know that |Zn *| = Φ (n). Thus the tptal number of integers less than n and relatively prime

w.r.t n is Φ(n). Thus the probability that the selected number x∈ Z n * in RAND step 1 is Φ (n

)/ n . Thus from Theorem 3.6 after expected n / Φ(n)∈ O (log n / loglog n) iterations we will

get x ∈ Z n * . Thus the expected time complexity of RAND is O (log n / loglog n) assuming

the time complexity to compute gcd(x,n) is O (l og n). Thus in sessions i and j attacker will use a

random number r 1 and r 2= r 1 + Δ. Now we can clearly see that this attack will fail if Alice

chooses different values of k at each session. But in step 1 of the protocol Alice picks up k with 1

≤ k ≤ p-1 at random. Thus from Birthday Paradox after O (√p) sessions Alice will pick up k used

in some earlier session with high probability. Thus after O (√ p) sessions of the challenge

response protocol with high prpbability an Eavesdropper can compute the value m for ECDLP .

6 Solution to Overcome the Above Attack

In this section we will provide a solution i.e., a modified Zero Knowledge Proof for the ECDLP

that overcomes the above attack and prove the required properties i.e., Com- pleteness,

Soundness, and Zero-Knowledge, as explained previously . We also provide an explanation of

how it overcomes the above attack.

Let the proverbe Alice and the verifier be Bob . Let the Elliptic Curve be denoted by Ep(A, B)

and let n be the number of points on the Elliptic Curve. Let P ∈ Ep(A, B) be a generator of the

group. So Alice wants to convince Bob that she knows the value of m where Q = mP without

disclosing m . It can be achieved by following steps :

1. Alice picks random integers k1and k2with 1 ≤k1, k2≤p - 1 where p is the c haracteristic of the

field and sends R1= k1P and R2 = k2Q to Bob.

2. Bob picks random integer r with 1 ≤r ≤p - 1 and sends it to Alice.

3. Alice computes Y = (mrk2- k 1) mod n where n is the number of points on the curve i.e.

#E(Fp)= n , and sends it to Alice.

4. Bob verifies if YP + R1== rR2.

PGDCS 00: Cryptography Uttarakhand Open University

 Page
105

If step 4 is satisfied then Bob accepts else rejects. Now we will verify the three properties stated

previously for the protocol as follows :

1. Completeness : Given Q = mP . We have to show that if Alice knows value of m , then Bob is

convinced that Alice knows it.

Since Alice knows value of m , all four steps in the protocol can be carried out. At step 3 Alice

computes Y = (mrk2-k1) mod n and sends it to Bob. At step 4, Bob verifies YP + R1= rR2or not.

Now YP + R1= (mrk2- k1)P + k1P

= mrk2P- k1P + k1P

= mrk2P

= rk2Q (Replacing mP by Q)

=rR2(Replacing k2Q by R2) (Verified). So Bob is convinced that Alice knows m .

2. Soundness : Here we have to show that if Alice does not know value of m then she can't

convince Bob that she knows it or succeeds with a very small probability .

Now suppose Alice doesn't know value of m and wants to convince Bob that she knows it. The

only way that Alice can convince Bob is in step 3 of the protocol Alice should send such a value

for Y such that YP should have value rR2- R1, so that after adding R1 Bob will get rR2.

i.e. YP = rR2- R 1i.e. YP = k2rQ - k1P i.e. YP = mrk2P - k1P

i.e. Y = (mrk2- k1) mod n

Now Alice has values of r ,k2,k1but she doesn't have the value of m . So it can't find value of

(mrk2- k1). So she can't cheat.

3. Zero-Knowledge : Here we have to show that no information is released in the pro-tocol.

Now in one session of the protocol Bob/Eavesdropper E has the following information :

P,Q,R1= k1P , R2= k2Q,Y= (mrk2- k1) mod n .

Now Y = (mrk2- k1) mod n. From this modular equation to find out value of m the known

quantities are r and Y. In this modular linear equation Y =(mrk2- k1)mod n we have 3 unknowns

m,k1, and k2. Thus 2 ECDLPs R1= k1P and R2= k2Q reduces to solving Y = (mrk2- k1) mod n .

Thus in other words if there is an efficient way of obtaining k1and k2from the modular linear

equation Y =(mrk2- k1) mod n then there is an efficient solution to 2ECDLPs R1= k1P and R2=

k2Q . Hence solving the modular linear equation Y = (mrk2- k1) mod nis at least as hard as

PGDCS 00: Cryptography Uttarakhand Open University

 Page
106

solving ECDLPs R1= k1Pand R2= k2Q . So Bob/Eavesdropper can't know value of m . So the

proof is a Perfect Zero-Knowledge .

Now we will explain how the attack is avoided. Now suppose as earlier Bob / E gets Y1and Y2as

follows :

Y1= (mr1k12- k) mod nand Y2=(mr2k22- k)mod ni.e., in both sessions R 1 values are same. Here

k12and k22 indicate the k2 values in both sessions.Now subtracting as previously we will get Y1-

Y2= m(r1k12- r2k22) mod n . But as it doesn't know the value of k12 and k22, so it can't solve for the

Modular Linear Equation .Even if R2is same in b oth cases with R2= k2Qthen it will get the final

subtraction result as Y1- Y2= mk2(r1- r2)mod n. So solving it will give the value of mk2. Again if

we can obtain m efficiently we have an efficient solution to the ECDLP R2= k2Q. Thus again we

have a reduction from ECDLP to the problem of computing m from mk2 . So this proof system is

not susceptible to the previous attack.

Conclusion

The Elliptic Curve cryptosystem (ECC) can play an important role in asymmetric cryp-

tography . ECC is a stronger option than the RSA and Discrete Logarithm systems for the future.

Here we have presented a Zero Knowledge In teractive Proof for ECDLP where the elliptic

curve is of the form Ep(A,B) where pis a prime. The re- sult can be easily generalized to Eq(A,B)

for composite q where q = p
r
. Given a guess of m for ECDLP we can easily verify in polynomial

time whether P = m.Q . This shows E C D LP ∈ N P ⊆P S P AC E = I P [7]. This confirms with

our result that shows E C D LP ∈ I P . Subsequently we have also presented an attack on the

Zero Knowledge Pro-tocol using Birthday Paradox . Lastly we modified the Zero Knowledge

Proof to overcome this attack.

References

[1] T.ElGamal, ‖A Public Key Cryptosystem and a Signature Scheme based on

DiscreteLogarithm‖, IEEET ransactions on Information Theory , July 1985.

[2] Pinaki Mitra, M.Durgaprasad Rao, M. Kranthi Kumar, ‖Algorithms to Compute a Generator

of the Group (Zp
*
, xp) and Safe Primes‖, International Journal of Information Processing

(Accepted for Publication).

[3] Steven G. Krantz, ‖Zero Knowledge Proofs‖, July 2007.

PGDCS 00: Cryptography Uttarakhand Open University

 Page
107

[4] T.H. Coreman, C.E. Leiserson, R.L. Rivest, C. Stein, ‖Introduction to Algo- rithms(Second

Edition)‖', pp. 869-872.

[5] Lawrence C. Washington, ‖Elliptic Curves - Number Theory and Cryptography‖, pp- (164-

168), CHAPMAN & HALL/C R C, 2003.

[6] William Stallings, ‖Cryptography and Network Security‖, Prentice Hall of India, 2003.

[7] Adi Shamir, ‖IP = PS P A CE‖, Journal of the ACM (JACM), Volume 39 , Issue 4, pp869 -

877, October 1992.

[8] Pinaki Mitra and Santosh Swain, ―Zero Knowledge Interactive Proof for Elliptic Curve

Discrete Logarithm Problem‖, IJAC, Vol. 1(2010), pp. 1 – 5.

Reference:

1. A course in Number Theory and Cryptography, Neal Koblitz , Springer.

2. Introduction to Cryptography with Coding Theory , W. Trappe and L. C. Washington,

Pearson Education .

3. Cryptography and Network Security , William Stallings, Prenctice Hall India .

9.5 ELLIPTIC CURVE CRYPTOGRAPHY

Elliptic curve cryptosystem is based Elliptic Curve Discrete Logarithm Problem ,i.e., ECDLP .

The problem is defined as follows:

Given points P and Q on Ep(a,b) such that the equation kP = Q holds. Compute k given P and Q .

Representing Plaintext Message by a Point on the Elliptic Curve

 Suppose the plaintext message is an integer m. We have to represent this by a point on the

elliptic curve y
2
= x

3
+ax+b (mod p). We choose the x -coordinate of the representative point by m

. But it may so happen that m
3
+am+b (mod p) is not a quadratic residue and thus the ordinate

value is undefined. So we adopt the following randomized procedure described in [1].

Let K be the largest integer such that the failure probability 1/2
k

is acceptable. We also assume

that (m +1)K< p. the message m will be represented by a point with the abscissa value x = mK +

j, where 0 j < K. Also we assume that p 3 mod 4. This assumption will help us in computing

the square root deterministically. For j=0,1,2,…,K -1 check if z=x
3
+ax+b (mod p) is a quadratic

residue or not. If it is a quadratic residue we compute the vale of y as Now we

PGDCS 00: Cryptography Uttarakhand Open University

 Page
108

represent the message by Pm= (x,y). If the test fails for all values of j then we fail to map the

message to a point. Clearly the failure probability is 1/2
k
.

At the time of decryption we recover the message m from Pm= (x,y) as follows:

m = .

Elliptic Curve Analogue of Diffie- Hellman Key Exchange

 Publicly available information: Ep(a,b) and a point G on the curve with high order, i.e.,kG = O

for

large k . Let n be the total number of points on the curve.

1. Alice chooses her private key nA such that 1 nA n and computes the public key PA = nAxG.

2. Bob chooses his private key nB such that 1 nB n and computes the public key PB = nBxG.

3. Alice and Bob simultaneously compute the shared key K = nAxnBxG after computing nAxPB

and nBxPA respectively.

This key exchange scheme as mentioned earlier is susceptible to intruder-in-the-middle attack.

To overcome this all messages should be authenticated by its sender.

Elliptic Curve Analogue of ElGamal Cryptosystem

Bob's Public Key: PB

Bob's Secret Key: a where PB =αG .

PGDCS 00: Cryptography Uttarakhand Open University

 Page
109

Other Publicly Available Information: Elliptic Curve Ep(a,b) and a point G of large order on

the elliptic curve and the prime p .

Encryption (Sender: Alice)

Let Pm be the point on the elliptic curve corresponding to the plaintext message m .

• Alice chooses a random number k , such that 1 k p -1.

• She computes the cipher text C ={C1 ,C2} = { kG,Pm + kPB}.

• She sends the cipher text C ={C1,C2} to Bob.

Decryption (Receiver: Bob)

 After receiving the cipher text C ={C1 ,C2}

• Bob computes αC1 =αkG=kαG=kPB

• Then Bob subtracts the result obtained in Step1. from C2. Thus Bob computes C2- kPB = Pm

and recovers the plaintext.

Reference:

1. A course in Number Theory and Cryptography, Neal Koblitz , Springer.

2. Introduction to Cryptography with Coding Theory , W. Trappe and L. C. Washington,

Pearson Education .

3. Cryptography Theory and Practice , D. R. Stinson, CRC Press .

PGDCS 00: Cryptography Uttarakhand Open University

 Page
110

UNIT X: HASH FUNCTION DIGITAL SIGNATURES

10.1 CRYPTOGRAPHIC HASH FUNCTIONS

In cryptography, a cryptographic hash function is a transformation that takes an input and

returns a fixed-size string, which is called the hash value. Hash functions with this property are

used for a variety of computational purposes, including cryptography. The hash value is a

concise representation of the longer message or document from which it was computed. The

message digest is a sort of "digital fingerprint" of the larger document. Cryptographic hash

functions are used to do message integrity checks and digital signatures in various information

security applications, such as authentication and message integrity.

There is no formal definition which captures all of the properties considered desirable for a

cryptographic hash function.

A cryptographic hash function h : M → Z is a mapping from the set of messages of arbitray

length i.e., the domain M to a set of fixed length (approx. 160 bits) message digests i.e., the range

Z .

These properties below are generally considered prerequisites:

 Preimage resistant (See one way function for a related but slightly different property):

given h(m) it should be hard to find any m′ such that h (m′) = h (m).

 Second preimage resistant : given an input m1 , it should be hard to find another input, m2

(not equal to m1) such that h (m1) = h (m2).

This property is implied by collision-resistance. Second preimage resistance is sometimes

referred to as weak collision resistance .

 Collision-resistant : it should be hard to find two different messages m1 and m2 such that

h (m1) = h (m2). This property is sometimes referred to as strong collision resistance .

Birthday Paradox: If there are n people having m possible birthdays and if n > (approx.)

then with high probability (i.e., probability >) there will be a pair of people having the same

birthday.

Proof: The probability that all people having distinct birthday (assuming m > n) is as follows:

http://en.wikipedia.org/wiki/Hash_collision

PGDCS 00: Cryptography Uttarakhand Open University

 Page
111

=

≤ = £ ⇒ The probability that there is a pair of people

having the same birthday ≥ .

Thus ≥ ln (2) ⇒ n(n-1) ≥ 2 ln (2)m⇒ n ≥ (approx.) Q.E.D

Thus to check the strong collision resistance property of a hash function h : M → Z where the

output is β bits, i.e., | Z | = 2
β
 we have to test an arbitrary subset of M with cardinality β/2 for

collision. So to make this computation difficult for an hacker β is usually set to 160 bits.

It is however, a common misconception that "one-wayness" of a cryptographic hash function

means irreversibility of processing of the hash state, and that it somehow contradicts the

principles used to construct block ciphers. Such "irreversibility" in fact means presence of local

collisions that could facilitate attacks. The hash function must be a permutation processing its

state bijectively to be cryptographically secure. It must be irreversible regarding the data block

just like any block cipher must be irreversible regarding the key (it should be impossible to find

the key that can encrypt a block A into a block B faster than the brute-force). This makes iterated

block ciphers and hash functions processing blocks of the same size as secret keys of those block

ciphers virtually identical, except the roles of key and data blocks are swapped. All the attacks

against the MDx and SHA families of hash functions exploit local collisions in the processing of

the data block. The local collisions caused by the final addition operation can also be exploited

by these attacks.

MDx Hash Function Family

The family of MDx hash function started from MD4 and subsequently extended to MD5 and

MD7 . We first explain the principle of MD4 . MD4 converts a message block whose length is

modulo 512 bit long to a message digest of 128 bits concatenating contents of 4 registers after 3

rounds. First given a bit string x of arbitrary length it converts it a message M whose length is

modulo 512 bits. This is done as follows:

PGDCS 00: Cryptography Uttarakhand Open University

 Page
112

1. d = (447-| x |) mod 512

2. Let l denote the binary representation of | x | mod 264. | l |=64

3. M = x || 1 || 0
d
|| l .

In the above algorithm | x | denote the length of the bit string x . Thus we see that | x || 1 || 0
d
 | =

448 mod 512. Concatenating l we get | M | as a multiple of 512.

Then M is broken up into words of length 32 bits as follows:

M = M [0] M [1] … M [N -1]

Where each M [i] is 32 bit long and N º 0 mod 16. The overall algorithm proceeds as follows:

1. 1. A = 67452301 hex

2. B = efcdab89 hex

3. C = 98badcfe hex

4. D = 10325476 hex

5. for i = 0 to N/16 -1 do

6. for j = 0 to 15 do

7. X [j] = M [16i + j]

8. AA = A

9. BB = B

10. CC = C

11. DD = D

12. Round1

13. Round2

14. Round3

15. A = A + AA

16. B = B + BB

17. C = C + CC

18. D = D + DD

We maintain 4 registers A , B , C , D each of length 32 bits. In each iteration of the outer for loop

we process a message block X [0] X [1] … X [15] of length 512 bits to produce a message digest

of lenghth 128 bits formed by concatenating the contents of those 4 register A , B , C , D .

PGDCS 00: Cryptography Uttarakhand Open University

 Page
113

The above algorithm of MD4 was subsequently extended to MD5 that works in 4 rounds instead

of 3 rounds.

10.2 ELGAMAL DIGITAL SIGNATURES

1. Introduction:-

Traditionally signature with a message is used to give evidence of identity and intention with

regard to that message. For years people have been using various types of signature to associate

their identity and intention to the messages. Wax imprint, seal, and handwritten signature are the

common examples. But when someone need to sign a digital message, things turn different. In

case of signing a digital document one cannot use any classical approach of signing, because it

can be forged easily. Forger just need to cut the signature and paste it with any other message.

For signing a digital document one uses digital signature [1][2][3].

Therefore, digital signature are required not to be separated from the message and attached to

another. That is a digital signature is required to be both message and signer dependent. For

validating the signature anyone can verify the signature, so digital signature are suppose to be

verified easily.

A digital signature scheme typically consist of three distinct steps:

1. Key generation:- User compute their public key and corresponding private key.

2. Signing:- In this step user sign a given message with his/her private key.

3. Verification:- In this step user verify a signature for given message and public key.

So the functionality provided by digital signature can be stated as follows:

Authentication:- Digital signature provides authentication of the source of the messages as a

message is signed by the private key of the sender which is only known to him/her.

Authentication is highly desirable in many applications.

Integrity:- Digital signature provides integrity as digital signature uniquely associate with

corresponding message. i.e. After signing a message a message cannot be altered if someone do

it will invalidate the signature. There is no efficient method to change message and its signature

to produce a new message and valid signature without having private key. So both sender and

receiver don‘t have to worry about in transit alteration.

Non- repudiation:- For a valid signature sender of message cannot deny having signed it.

PGDCS 00: Cryptography Uttarakhand Open University

 Page
114

In this report we are going to discuss different variation of digital signature. First we will

describe RSA digital signature scheme and Elgamal signature scheme, along with their

elliptic curve version. After covering above signature scheme we will talk about digital

signature standards, and then we will cover proxy signature scheme, blind signature scheme

and then we will finally talk about short signature scheme.

2. RSA Digital Signature Scheme

Suppose Alice want to send a message(m) to Bob. She can generate digital signature using RSA

digital signature scheme [4] as follow:

Key Generation:-

She can generate key for RSA signature scheme:

1. Choose two distinct large prime numbers p and q.

2. Compute n = pq.

3. n is used as the modulus for both the public and private keys.

4. Compute φ(n) = (p − 1)(q − 1), where φ is Euler‘s totient function.

5. Choose an integer e such that 1 < e < φ(n) and gcd(e, φ(n)) = 1.

6. Compute d = e−1 modφ(n).

Then the public key and private key of user will be (e, n) and (d, n) respectively.

Now she have her public and private key. Now she can generate the signature of a message by

encrypting it by her private key.

So she can generate signature corresponding to message(m) as follow:

Signing:-

1. Represent the message m as an integer between 0 and n − 1.

2. Sign message by raising it to the dth power modulo n.

S ≡ m
d
 (mod n)

So S is the signature corresponding to message m. Now she can send message malong with the

signature S to Bob.

Upon receiving the message and signature (m, S), Bob can verify the signature by decrypting it

by Alice public key as follow:

PGDCS 00: Cryptography Uttarakhand Open University

 Page
115

Verification:-

1. Verify signature by raising it to the eth power modulo n.

m' ≡ S
e
 (mod n)

2. If m' = m (mod n) then signature is valid otherwise not.

For a valid signature both mand m' will be equal because:

S ≡ m
d
 (mod n)

m' ≡ m
de

(mod n)

and

e is inverse of d, i.e. ed ≡ 1(mod Φ(n)).

So, by using above algorithm Alice can generate a valid signature S for her message m, but there

is a problem in above define scheme that is the length of the signature is equal to the length of

the message. This is a disadvantage when message is long.

There is a modification in the above scheme. The signature scheme is applied to the hash of the

message, rather than to the message itself.Now Alice have a message signature pair (m, S). So,

the signature S is a valid signature for message m. So a forger (lets say Eve) cannot forge Alice

signature. i.e. She cannot use signature S with another message lets say m1, because S
e
is not

equal to m1. Even when the signature scheme is applied to the hash of the message it is infeasible

to forge the signature, because it is infeasible to produce two message m, m1with same hash

value.

In practice, the public key in RSA digital signature scheme is much smaller than the private key.

This enable a user to verify the message easily. This is a desired because a message may be

verified more than once, so the verification process should be faster than signing process.

The RSA Digital Signature Algorithm:-

Additional instructions for RSA signature algorithm is as follows:

An RSA digital signature key pair consists of an RSA private key, which is used to compute a

digital signature, and an RSA public key, which is used to verify a digital signature. An RSA

digital signature key pair shall not be used for other purposes (e.g. key establishment).

An RSA public key consists of a modulus n, which is the product of two positive prime integers

p and q (i.e., n = pq), and a public key exponent e. Thus, the RSA public key is the pair of values

(n, e) and is used to verify digital signatures. The size of an RSA key pair is commonly

PGDCS 00: Cryptography Uttarakhand Open University

 Page
116

considered to be the length of the modulus n in bits (nlen). The corresponding RSA private key

consists of the same modulus n and a private key exponent d that depends on n and the public

key exponent e. Thus, the RSA private key is the pair of values (n, d) and is used to generate

digital signatures. In order to provide security for the digital signature process, the two integers p

and q, and the private key exponent d shall be kept secret. The modulus n and the public key

exponent e may be made known to anyone.

The Standard specifies three choices for the length of the modulus (i.e., nlen): 1024, 2048 and

3072 bits.

An approved hash function, as specified in [7], shall be used during the generation of key pairs

and digital signatures. When used during the generation of an RSA key pair, the length in bits of

the hash function output block shall meet or exceed the security strength associated with the bit

length of the modulus n. The security strength associated with the RSA digital signature process

is no greater than the minimum of the security strength associated with the bit length of the

modulus and the security strength of the hash function that is employed. Both the security

strength of the hash function used and the security strength associated with the bit length of the

modulus n shall meet or exceed the security strength required for the digital signature process.

10.3 BLIND & PRONY SIGNATURE

Elgamal digital signature scheme[5] is proposed by Elgamal in 1985. This is based on Diffe-

Hellman key exchange. This signature scheme is quite different from RSA signature scheme in

terms of validity of signatures corresponding to a message. i.e. there are many valid signatures

for a message. Suppose Alice want to sign a message using Elgamal digital signature scheme,

she can generate signature S corresponding to message m as follow:

Key generation:-

She can generate key for Elgamal signature scheme as follow:

1. Choose p be a large prime.

2. Choose g be a randomly chosen generator of the multiplicative group of integers Zp .

3. Choose a secret key x such that 1 < x < p − 1.

4. Compute y = g
x
 (mod p).

PGDCS 00: Cryptography Uttarakhand Open University

 Page
117

Then the public key and private key of user will be (p, g, y) and (p, g, x) respectively.

Signing:-

Now Alice has her public and private key so she can sign a message m by using following steps:

1. Choose a random number k such that 0 < k < p − 1 and gcd(k, p − 1) = 1.

2. Compute r ≡ g
k
(mod p).

3. Compute s ≡ (H(m) − xr)k
-1

 (mod p − 1). Where H(m) is hash of message.

Then the pair (r, s) is the signature of the message m.

Verification:-

Bob can verify the signature (r, s) of message m as follow:

1. Download Alice's public key (p, g, y).

2. Compute v1 ≡ g
H(m)

(mod p) and v2 ≡ y
r
 r

s
 (mod p).

3. The signature is declared valid if and only if v1 ≡ v2 (mod p).

For a valid signature (r, s), v1 ≡ v2 (mod p) since

 s ≡ (H(m) − xr)k
-1

 (mod p − 1)

 sk ≡ (H(m) − xr)(mod p − 1)

 H(m) ≡ (sk + xr)(mod p -1)

 v1 ≡ g
H(m)

(mod p)

 v1 ≡ g
(sk + xr)

(mod p)

 v1 ≡ g
(sk)

 g
(xr)

(mod p)

 v1 ≡ (g
k
)

s
 (g

 x
)

r
(mod p)

 v1 ≡ y
 r
 r

 s
 (mod p)

 v1 ≡ v2 (mod p).

The security of Elgamal digital signature scheme relies on the difficulty of computing discrete

logarithms. The security of the system follows from the fact that since x is kept private for

forging Elgamal digital signature one do need to solve discrete logarithm problem.s

Suppose Eve want to forge Alice signature for a message m1and she doesn't know x (as x kept

private by Alice), then she cannot compute s(as s ≡ (H(m1) − xr)k
-1

 (mod p − 1)). Now the

only option left is to choose s which satisfies the verification. Thus s should satisfy equation y
r
r

s
 ≡ g

H(m)
(mod p) as Eve knows (p, g, y) so she can compute r. So the equation can be rearrange

as r
s
 ≡ y

-r
 g

H(m)
(mod p), which is again a discrete logarithm problem. So Elgamal signature

PGDCS 00: Cryptography Uttarakhand Open University

 Page
118

scheme is secure, as long as discrete logarithm are difficult to compute.

Digital Signature Standards

Digital signature standards [6] define some standards to be followed. A digital signature scheme

includes a signature generation and a signature verification. Each user has a public and private

key and is the owner of that key pair.

 For both the signature generation and verification processes, the message (i.e., the signed data)

is converted to a fixed-length representation of the message by means of an approved hash

function. Both the original message and the digital signature are made available to a verifier.

A verifier requires assurance that the public key to be used to verify a signature belongs to the

entity that claims to have generated a digital signature (i.e., the claimed signatory). That is, a

verifier requires assurance that the signatory is the actual owner of the public/private key pair

used to generate and verify a digital signature. A binding of an owners identity and the owners

public key shall be effected in order to provide this assurance.

A verifier also requires assurance that the key pair owner actually possesses the private key

associated with the public key, and that the public key is a mathematically correct key. By

obtaining these assurances, the verifier has assurance that if the digital signature can be correctly

verified using the public key, the digital signature is valid (i.e., the key pair owner really signed

the message). Digital signature validation includes both the (mathematical) verification of the

digital signature and obtaining the appropriate assurances.

Technically, a key pair used by a digital signature algorithm could also be used for purposes

other than digital signatures (e.g., for key establishment). However, a key pair used for digital

signature generation and verification as specified in this Standard shall not be used for any other

purpose. A number of steps are required to enable a digital signature generation or verification

capability in accordance with Standards.

Initial Setup:-

Each intended signatory shall obtain a digital signature key pair that is generated as specified for

the appropriate digital signature algorithm, either by generating the key pair itself or by obtaining

the key pair from a trusted party. The intended signatory is authorized to use the key pair and is

PGDCS 00: Cryptography Uttarakhand Open University

 Page
119

the owner of that key pair. Note that if a trusted party generates the key pair, that party needs to

be trusted not to masquerade as the owner, even though the trusted party knows the private key.

 After obtaining the key pair, the intended signatory (now the key pair owner) shall obtain

assurance of the validity of the public key and assurance that he/she actually possesses the

associated private key.

Digital Signature Generation:-

Prior to the generation of a digital signature, a message digest shall be generated on the

information to be signed using an appropriate approved hash function.

 Using the selected digital signature algorithm, the signature private key, the message digest,

and any other information required by the digital signature process, a digital signature shall be

generated according to the Standard.

 The signatory may optionally verify the digital signature using the signature verification

process and the associated public key. This optional verification serves as a final check to detect

otherwise undetected signature generation computation errors; this verification may be prudent

when signing a high-value message, when multiple users are expected to verify the signature, or

if the verifier will be verifying the signature at a much later time.

Digital Signature Verification and Validation:-

In order to verify a digital signature, the verifier shall obtain the public key of the claimed

signatory,(usually) based on the claimed identity. A message digest shall be generated on the

data whose signature is to be verified (i.e., not on the received digital signature) using the same

hash function that was used during the digital signature generation process. Using the appropriate

digital signature algorithm, the domain parameters (if appropriate), the public key and the newly

computed message digest, the received digital signature is verified in accordance with this

Standard. If the verification process fails, no inference can be made as to whether the data is

correct, only that in using the specified public key and the specified signature format, the digital

signature cannot be verified for that data.

Before accepting the verified digital signature as valid, the verifier shall have

1. assurance of the signatory claimed identity,

2. assurance of the validity of the public key, and

PGDCS 00: Cryptography Uttarakhand Open University

 Page
120

3. assurance that the claimed signatory actually possessed the private key that was used to

generate the digital signature at the time that the signature was generated.

If the verification and assurance processes are successful, the digital signature and signed data

shall be considered valid. However, if a verification or assurance process fails, the digital

signature should be considered invalid.

10.4 SHORT SIGNATURE SCHEME I

Suppose Alice want her message to be sign by Bob without letting him know the content of the

message, she can got it done using Blind signature scheme [8]. Blind signatures scheme,

proposed by Chaum, allow a signer to interactively sign messages for users such that the

messages are hidden from the signer. Blind signature typically have two basic security

properties: blindness says that a malicious signer cannot decide upon the order in which two

messages have been signed in two executions with an honest user, and unforgeability demands

that no adversarial user can create more signatures than interactions with the honest signer took

place.

Blind signatures are typically employed in privacy-related protocols where the signer and

message author are different parties. Blind signature schemes see a great deal of use in

 applications where sender privacy is important, some of them are:

1. Cryptographic election systems (e-Vote).

2. Digital cash schemes (e-Cash)

Blind signature scheme can be used with RSA signature algorithm. In RSA signature scheme a

signature is computed by encrypting the message by the private key. In case of the blind

signature there is one additional step Blinding the message. Alice can blind her message and get

is signed by Bob, and remove the blinding factor after getting it signed. Suppose (e, N) and (d,

N) is the public key and private key of Bob respectively then Alice can blind her message as

follows:

Blinding the message:-

1. Alice choose a random value r, such that r is relatively prime to N (i.e. gcd(r, N) = 1).

PGDCS 00: Cryptography Uttarakhand Open University

 Page
121

2. Calculate blinding factor by raising r to the public key e (mod N) (i.e. blinding factor is

equal to r
e
(mod N)).

3. Blind the message by computing the product of the message and blinding factor, i.e.

m' ≡ mr
e
 (mod N)

Now Alice can send blinded message m' to Bob. Now m' does not leak any information about m,

as r is private to Alice. Any malicious user need to solve discrete logarithm problem for

recovering original m from m'.

Signing:-

When Bob (signing authority) receive a blinded message from Alice (user) he will sign the

message by his private key

S' ≡ (m')
d
(mod N)

S' is the signature corresponding to message m'. Bob send S' to Alice. Alice removes the

blinding factor from the signature by dividing it r and revel the original RSA signature S as

follow:

S ≡ S'r
-1

 (mod N)

Now Alice message m with signature S, signature can be verified using Bob's public key.

Verification:-

Now signature can be verified as usual RSA signature.

1. Verify signature by raising it to the eth power module N.

m' ≡ S
e
 (mod N)

2. If m' = m (mod N) then signature is valid otherwise not.

The above scheme will work fine. i.e. (S, m) is a valid signature message tuple corresponding to

Bob. Since

 S ≡ S'r
-1

 (mod N)

 ≡ (m')
d
r

-1
 (mod N)

 ≡ (mr
e
)
d
r

-1
 (mod N)

 ≡ m
d
r

ed
r

-1
 (mod N)

 ≡m
d
rr

-1
 (mod N)

 ≡ m
d
 (mod N)

PGDCS 00: Cryptography Uttarakhand Open University

 Page
122

5. Proxy Signature:-

In proxy signature scheme a user Alice (original signer) delegates her signing capability to

another user, Bob(proxy signer), so that Bob can sign messages on behalf of Alice. Proxy

signature can be validate for its correctness and can be distinguished between a normal signature

and a proxy signature. So the verifier can be convinced of the original signer‘s agreement on the

signed message. Proxy signature is used in a number of applications, including electronic

commerce, mobile agents, distributed shared object systems,and many more. For example, the

president of a company delegates a signing right to his/her secretary before a vacation. The

secretary can make a signature on behalf of the president, and a verifier can be confident that the

signature has been made by the authorized secretary. The verifier can also be convinced of the

president‘s agreement on the signed message. Typically, a proxy signature scheme is as follows.

The original signer Alice sends the proxy signer Bob a signature that is associated with a specific

message. Bob makes a proxy private key using this information. Bob can then sign on a message

with the proxy private key using a normal signature scheme. After the message and signature

have been sent to the verifier, he/she recovers a proxy public key using public information and

verifies the proxy signature using a normal signature scheme.

Proxy Signature scheme is introduced by Mambo [9]. Proxy signature scheme is based on a

discrete logarithm problem. The original signer has the private key x and public key y ≡ g
x
(mod

p). Proxy signature scheme is as follow:

System Parameters:-

The original signer choose k randomly and computes r = g
k
 mod p, and s = x + kr mod p. Now

original signer send these system parameters to the proxy signer.

i.e. original signer sends (r, s) to the proxy signer. The proxy signer checks the validity of (r, s)

as follows:

 g
s
 = yr

r
 mod p

If this equality holds, the proxy signer accepts (r, s)as the valid proxy secret key.

Signing

The proxy signer signs a message m, then its signature Sp is generated. After that, the proxy

signer sends the message and its signature, which are (m, Sp , r), to the verifier.

PGDCS 00: Cryptography Uttarakhand Open University

 Page
123

Verification

Upon receiving (m, Sp , r), the verifier recovers y' by y' = yr
r
 mod p and substitute y' for y. After

that, the verifier proceeds the verification phase of normal signature scheme.

10.5 SHORT SIGNATURE SCHEME II

Short signature scheme[10] give the shortest signature among all discussed signature schemes.

This signature scheme use elliptic curve and bilinear pairing. We will discuss this signature

scheme starting from the basic signature scheme and then type of bilinear pairing it uses, after

that security multiplier and finally types of elliptic curve used in this scheme.

Short signature scheme is in three parts, KeyGen, Sign, and Verify. It makes use of a hash

function h : {0, 1}∗→ G∗ . Where G is the base group and g is generator. G, g are system

parameters.

1. Key Generation:- Choose a random x ∈ Z∗
p , and compute v ← g

x
 . x is the secret key and v

is the public key.

2. Signing:- For a message M ∈ {0, 1}∗ , and secret key x, Compute h←h(M), and σ← h
x
 . The

signature is σ ∈ G∗.

3. Verification:- For a given public key v, a message M , and a signature , compute h← h(M)

and verify that (g, v, h, σ) is a valid Diffie-Hellman tuple.

So short signature scheme use bilinear pairing in verification of the signature.

Bilinear pairing:-

Let G1 and GT be two cyclic groups of prime order q. Let G2 be a group and each element of G2

has order dividing q. A bilinear pairing e is e : G1× G2→ GT such that

1. e(g1 , g2) = 1GT for all g2 ∈ G2 if and only if g1 = 1G1 , and similarly e(g1 , g2) = 1GT for

all g1 ∈ G1 if and only if g2 = 1G2 .

2. for all g1 ∈ G1 and g2 ∈ G2, e(g1 , g2) = e(g1
a
 , g2

b
)

ab
 for all a, b ∈ Z.

Security Multiplier: - Let a finite field Fp
l
 where p is a prime and l is a positive integer, and an

elliptic curve E over Fp
l
 have m points. Let, point P of elliptic curve has order q, where q

2
!| m.

Then subgroup P has a security multiplier α > 0, if order of p
l
in F∗

qis α. We will discuss different

families of elliptic curve Which are classified by the value of security multiplier.

PGDCS 00: Cryptography Uttarakhand Open University

 Page
124

Type 1

Let p be a prime where p = 2(mod 3). Let E be the elliptic curve defined over Fp , and equation

of the curve is y
2
 = x

3
 + b, Typically b = ±1. Then E(Fp) is supersingular curve, and number of

points, #E(Fp) = p + 1, and #E(Fp
2
) = (p + 1)

2
 . For any odd j | p + 1, G = E(Fp)[j] is cyclic and

has security multiplier α = 2. Let ι be the cube root of unity. Consider the following map,

sometimes referred to as a distortion map:

Φ(x, y) = (ιx, y)

Then Φ maps points of E(Fp) to points of E(Fp2)\E(Fp). Thus if f denotes the bilinear pairing,

then defining e : G × G → Fq2by e(P, Q) = f (P, Φ(Q)) gives a bilinear non-degenerate map.

Type 2

Unlike above discussed curve this type of curve have low characteristic field. Let F is a finite

field defined over 3
l
 where l is a positive exponent. Let curve E

+
 : y

2
 = x

3
 + 2x + 1, and

E : y
2
 = x

3
 + 2x-1, over F3

l
 .

when l = ±1mod12

#E
+
 (F3

l
) = 3

l
 + 1 + 3

(l+1)/2

when l = ±5mod12

#E
+
 (F3

l
) = 3

l
 + 1 − 3

(l+1)/2

when l = ±1mod12

#E
-
(F3

l
) = 3

l
 + 1 − 3

(l+1)/2

when l = ±5mod12

#E
 -
 (F3

l
) = 3

l
 + 1 + 3

(l+1)/2

Type 3

Let p be a prime where p ≡ 3(mod 4). Let E be the elliptic curve defined over Fp , and equation

of the curve is y
2
 = x

3
 + ax, where a ∈ Z(mod p). Then E(Fq) is supersingular curve, and number

of point, #E(Fp) = p + 1, and #E(Fp2) = (p + 1)
2
 . For any odd j|p + 1, Group G = E(Fp)[j] is

cyclic and has security multiplier α = 2.

Type 4

Type 4 curves are non-supersingular. By considering cyclotomic polynomials, elliptic curve with

security multiplier 12 can be generated. Let q(x) = 36x
4
 + 36x

3
 + 24x

2
 + 6x + 1. Let t(x) = 6x

2
 +

1. If D = 3, then solution of CM equation will always be V = 6x
2
 + 4x + 1. It turns out q(x) + 1 −

PGDCS 00: Cryptography Uttarakhand Open University

 Page
125

t(x) | q(x)12 − 1. So the value of security multiplier is 12. Following algorithm is used to

generate curves:

1. Pick an integer x of a desired magnitude. It may be negative.

2. Check if q(x) is prime.

3. Check if n = q(x) − t(x) + 1 has a large prime factor r. (Ideally it should be prime.)

4. Try different values of k until a random point of y
2
 = x

3
 + k has order n.

Type 5

Type 5 curve are also non-supersingular curve. Type 6 curve are ordinary curves with security

multiplier 6. Order of type 6 curves is a prime or a prime multiplied by a small constant. Let a

finite field F defined over some p where p = s∗q. Where s is a small constant and q is a prime.

When type 5 curve is defined over field Fp6, its order is a multiple of q
2
.

References for Last 4 Lectures:

1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein

―Introduction to Algorithms‖. Third Edition.

2. Wade Trappe, Lawrence C. Washington ―Introduction to Cryptography with Coding

Theory‖ Second Edition.

3. William Stallings ―Cryptography and Network Security‖. Fourth Edition.

4. R.L. Rivest, A. Shamir, and L. Adleman ―A Method for Obtaining Digital Signatures

PGDCS 00: Cryptography Uttarakhand Open University

 Page
126

UNIT XI: STREAM CIPHERS

11.1 VIDEO DATA CIPHERS

Ciphers:

1. Block Cipher

2. Stream Cipher

Block Cipher: The same function is used to encrypt successive blocks (memory less).

Stream Cipher: This processes plan text as small as single bit. It has memory.

One – Time – Pad (corresponding cipher is called Vernam cipher)

plain text

keystream

cipher text

Decryption :

 Assumption: is truly random.

Synchronous Stream Ciphers:

{There is a clock which is same at both the ends}

Definition: a synchronous stream cipher is one in which the key stream is generated

independently of the plain text and cipher text.

Properties of Synchronous stream cipher:

• Synchronization requirement: In a synchronous stream cipher, both the sender and receiver

must be synchronized using the same key. If synchronization is lost due to cipher text digits

being inserted or deleted during transmission, then decryption fails and can only be restored

through additional techniques for re-synchronization. This involves either re-initialization or

placing special marker at regular intervals or redundancy in plain text.

PGDCS 00: Cryptography Uttarakhand Open University

 Page
127

• No error propagation: A cipher text digit that is modified during transmission doesn't effect

decryption of other cipher text digits.

Active attacks: As a consequence of properly (i), the insertion, deletion or replay of cipher text

digits by an active adversary causes immediate loss of synchronization and hence might possibly

be detected by decryptors.

Application: Stream ciphers are used for video data stream.

Reference:

1. Handbook of Applied Cryptography , A. Menzes, P. van Oorschot and S. Vanstone.

Scribes: Rakesh Yarlagadda, Ravi Ranjan

PGDCS 00: Cryptography Uttarakhand Open University

 Page
128

Properties of Synchronous stream cipher:

• Synchronization requirement: In a synchronous stream cipher, both the sender and receiver

must be synchronized using the same key. If synchronization is lost due to cipher text digits

being inserted or deleted during transmission, then decryption fails and can only be restored

through additional techniques for re-synchronization. This involves either re-initialization or

placing special marker at regular intervals or redundancy in plain text.

• No error propagation: A cipher text digit that is modified during transmission doesn't effect

decryption of other cipher text digits.

Active attacks: As a consequence of properly (i), the insertion, deletion or replay of cipher text

digits by an active adversary causes immediate loss of synchronization and hence might possibly

be detected by decryptors.

Application: Stream ciphers are used for video data stream.

Reference:

1. Handbook of Applied Cryptography , A. Menzes, P. van Oorschot and S. Vanstone.

Scribes: Rakesh Yarlagadda, Ravi Ranjan

